Excitability changes in human corticospinal projections to forearm muscles during voluntary movement of ipsilateral foot

Fausto Baldissera, Paola Borroni, Paolo Cavallari, Gabriella Cerri

Research output: Contribution to journalArticle

Abstract

Excitability of the H-reflex in the relaxed flexor carpi radialis (FCR) muscle was tested during voluntary oscillations of the ipsilateral foot at five evenly spaced delays during a 600 ms cycle. In some experiments the H-reflex was conditioned by transcranial magnetic stimulation (TMS). With the hand prone, the amplitude of the FCR H-reflex was modulated sinusoidally with the same period as the foot oscillation, the modulation peak occurring in coincidence with contraction of the foot plantar-flexor soleus and the trough during contraction of the extensor tibialis anterior. When the H-reflex was facilitated by TMS at short latency (conditioning-test interval: -2 to -3.5 ms), the modulation was larger than that occurring with an unconditioned reflex of comparable size. This suggests that both the peripheral and the corticospinal components of the facilitated response were modulated in parallel. When the H-reflex was tested 40-60 ms after conditioning, i.e. during the cortical 'silent period' induced by TMS, no direct effect was produced on the reflex size but the foot-associated modulation was deeply depressed. These results suggest that the reflex modulation may depend on activity fluctuations in the cortical motor area innervating the forearm motoneurones. It is proposed that when the foot is rhythmically oscillated, along with the full activation of the foot cortical area a simultaneous lesser co-activation of the forearm area produces a subliminal cyclic modulation of cervical motoneurones excitability. Should the two limbs be moved together, the time course of this modulation would favour isodirectional movements of the prone hand and foot, indeed the preferential coupling observed when hand and foot are voluntarily oscillated.

Original languageEnglish
Pages (from-to)903-911
Number of pages9
JournalJournal of Physiology
Volume539
Issue number3
DOIs
Publication statusPublished - Mar 15 2002

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'Excitability changes in human corticospinal projections to forearm muscles during voluntary movement of ipsilateral foot'. Together they form a unique fingerprint.

  • Cite this