Expression of human epileptic temporal lobe neurotransmitter receptors in Xenopus oocytes: An innovative approach to study epilepsy

Eleonora Palma, Vincenzo Esposito, Anna Maria Mileo, Giancarlo Di Gennaro, Pierpaolo Quarato, Felice Giangaspero, Ciriaco Scoppetta, Paolo Onorati, Flavia Trettel, Ricardo Miledi, Fabrizio Eusebi

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Poly(A+) RNA was extracted from the temporal lobe (TL) of medically intractable epileptic patients which underwent surgical TL resection. Injection of this mRNA into Xenopus oocytes led to the expression of ionotropic receptors for γ-aminobutyric acid (GABA), kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Membrane currents elicited by GABA inverted polarity at -15 mV, close to the oocyte's chloride equilibrium potential, were inhibited by bicuculline, and were potentiated by pentobarbital and flunitrazepam. These basic characteristics were also displayed by GABA currents elicited in oocytes injected with mRNAs isolated from human TL glioma (TLG) or from mouse TL. However, the GABA receptors expressed by the epileptic TL mRNA exhibited some unusual properties, consisting in a rapid current run-down after repetitive GABA applications and a large EC50 (125 μM). AMPA alone evoked very small or nil currents, whereas KAI induced larger currents. Nevertheless, upon cyclothiazide treatment, AMPA elicited substantial currents that, like the KAI currents, were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore, the glutamate receptor 5 (GluR5) agonist, ATPA, failed to evoke an obvious current although both RT-PCR and Western blot analyses showed GluR5 expression in the epileptic TL. Oocytes injected with mouse TL or human TLG mRNAs generated KAI and AMPA currents similar to those evoked in oocytes injected with epileptic TL mRNA but, in contrast to these, the mouse TL and human TLG oocytes were also responsive to ATPA. Our findings are in accord with the concept that both a depression of GABA inhibition and a dysfunction of the KAI-receptor system maintain a high neuronal excitability that results in epileptic seizures.

Original languageEnglish
Pages (from-to)15078-15083
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
Issue number23
DOIs
Publication statusPublished - Nov 12 2002

Fingerprint

Neurotransmitter Receptor
Temporal Lobe
Xenopus
Oocytes
Epilepsy
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
gamma-Aminobutyric Acid
Kainic Acid
Messenger RNA
Glioma
Glutamate Receptors
6-Cyano-7-nitroquinoxaline-2,3-dione
Aminobutyrates
Kainic Acid Receptors
Flunitrazepam
GABA Receptors
Bicuculline
Pentobarbital
Operative Time
Chlorides

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{89011e07ec4343baa80fd8c205dd3c12,
title = "Expression of human epileptic temporal lobe neurotransmitter receptors in Xenopus oocytes: An innovative approach to study epilepsy",
abstract = "Poly(A+) RNA was extracted from the temporal lobe (TL) of medically intractable epileptic patients which underwent surgical TL resection. Injection of this mRNA into Xenopus oocytes led to the expression of ionotropic receptors for γ-aminobutyric acid (GABA), kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Membrane currents elicited by GABA inverted polarity at -15 mV, close to the oocyte's chloride equilibrium potential, were inhibited by bicuculline, and were potentiated by pentobarbital and flunitrazepam. These basic characteristics were also displayed by GABA currents elicited in oocytes injected with mRNAs isolated from human TL glioma (TLG) or from mouse TL. However, the GABA receptors expressed by the epileptic TL mRNA exhibited some unusual properties, consisting in a rapid current run-down after repetitive GABA applications and a large EC50 (125 μM). AMPA alone evoked very small or nil currents, whereas KAI induced larger currents. Nevertheless, upon cyclothiazide treatment, AMPA elicited substantial currents that, like the KAI currents, were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore, the glutamate receptor 5 (GluR5) agonist, ATPA, failed to evoke an obvious current although both RT-PCR and Western blot analyses showed GluR5 expression in the epileptic TL. Oocytes injected with mouse TL or human TLG mRNAs generated KAI and AMPA currents similar to those evoked in oocytes injected with epileptic TL mRNA but, in contrast to these, the mouse TL and human TLG oocytes were also responsive to ATPA. Our findings are in accord with the concept that both a depression of GABA inhibition and a dysfunction of the KAI-receptor system maintain a high neuronal excitability that results in epileptic seizures.",
author = "Eleonora Palma and Vincenzo Esposito and Mileo, {Anna Maria} and {Di Gennaro}, Giancarlo and Pierpaolo Quarato and Felice Giangaspero and Ciriaco Scoppetta and Paolo Onorati and Flavia Trettel and Ricardo Miledi and Fabrizio Eusebi",
year = "2002",
month = "11",
day = "12",
doi = "10.1073/pnas.232574499",
language = "English",
volume = "99",
pages = "15078--15083",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "23",

}

TY - JOUR

T1 - Expression of human epileptic temporal lobe neurotransmitter receptors in Xenopus oocytes

T2 - An innovative approach to study epilepsy

AU - Palma, Eleonora

AU - Esposito, Vincenzo

AU - Mileo, Anna Maria

AU - Di Gennaro, Giancarlo

AU - Quarato, Pierpaolo

AU - Giangaspero, Felice

AU - Scoppetta, Ciriaco

AU - Onorati, Paolo

AU - Trettel, Flavia

AU - Miledi, Ricardo

AU - Eusebi, Fabrizio

PY - 2002/11/12

Y1 - 2002/11/12

N2 - Poly(A+) RNA was extracted from the temporal lobe (TL) of medically intractable epileptic patients which underwent surgical TL resection. Injection of this mRNA into Xenopus oocytes led to the expression of ionotropic receptors for γ-aminobutyric acid (GABA), kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Membrane currents elicited by GABA inverted polarity at -15 mV, close to the oocyte's chloride equilibrium potential, were inhibited by bicuculline, and were potentiated by pentobarbital and flunitrazepam. These basic characteristics were also displayed by GABA currents elicited in oocytes injected with mRNAs isolated from human TL glioma (TLG) or from mouse TL. However, the GABA receptors expressed by the epileptic TL mRNA exhibited some unusual properties, consisting in a rapid current run-down after repetitive GABA applications and a large EC50 (125 μM). AMPA alone evoked very small or nil currents, whereas KAI induced larger currents. Nevertheless, upon cyclothiazide treatment, AMPA elicited substantial currents that, like the KAI currents, were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore, the glutamate receptor 5 (GluR5) agonist, ATPA, failed to evoke an obvious current although both RT-PCR and Western blot analyses showed GluR5 expression in the epileptic TL. Oocytes injected with mouse TL or human TLG mRNAs generated KAI and AMPA currents similar to those evoked in oocytes injected with epileptic TL mRNA but, in contrast to these, the mouse TL and human TLG oocytes were also responsive to ATPA. Our findings are in accord with the concept that both a depression of GABA inhibition and a dysfunction of the KAI-receptor system maintain a high neuronal excitability that results in epileptic seizures.

AB - Poly(A+) RNA was extracted from the temporal lobe (TL) of medically intractable epileptic patients which underwent surgical TL resection. Injection of this mRNA into Xenopus oocytes led to the expression of ionotropic receptors for γ-aminobutyric acid (GABA), kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Membrane currents elicited by GABA inverted polarity at -15 mV, close to the oocyte's chloride equilibrium potential, were inhibited by bicuculline, and were potentiated by pentobarbital and flunitrazepam. These basic characteristics were also displayed by GABA currents elicited in oocytes injected with mRNAs isolated from human TL glioma (TLG) or from mouse TL. However, the GABA receptors expressed by the epileptic TL mRNA exhibited some unusual properties, consisting in a rapid current run-down after repetitive GABA applications and a large EC50 (125 μM). AMPA alone evoked very small or nil currents, whereas KAI induced larger currents. Nevertheless, upon cyclothiazide treatment, AMPA elicited substantial currents that, like the KAI currents, were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore, the glutamate receptor 5 (GluR5) agonist, ATPA, failed to evoke an obvious current although both RT-PCR and Western blot analyses showed GluR5 expression in the epileptic TL. Oocytes injected with mouse TL or human TLG mRNAs generated KAI and AMPA currents similar to those evoked in oocytes injected with epileptic TL mRNA but, in contrast to these, the mouse TL and human TLG oocytes were also responsive to ATPA. Our findings are in accord with the concept that both a depression of GABA inhibition and a dysfunction of the KAI-receptor system maintain a high neuronal excitability that results in epileptic seizures.

UR - http://www.scopus.com/inward/record.url?scp=0037069372&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037069372&partnerID=8YFLogxK

U2 - 10.1073/pnas.232574499

DO - 10.1073/pnas.232574499

M3 - Article

C2 - 12409614

AN - SCOPUS:0037069372

VL - 99

SP - 15078

EP - 15083

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 23

ER -