TY - JOUR
T1 - Expression of pannexin1 in the cns of adult mouse
T2 - Cellular localization and effect of 4-aminopyridine-induced seizures
AU - Zappalà, A.
AU - Cicero, D.
AU - Serapide, M. F.
AU - Paz, C.
AU - Catania, M. V.
AU - Falchi, M.
AU - Parenti, R.
AU - Pantò, M. R.
AU - La Delia, F.
AU - Cicirata, F.
PY - 2006
Y1 - 2006
N2 - The expression pattern of pannexin1, a gene coding for a protein that forms gap junction channels, was studied as both mRNA and protein in the CNS of adult mouse. Pannexin1 was widely expressed in the CNS by neuronal cell types but not glial cells, except for Bergmann glial cells of the cerebellar cortex. Cells positive to Ca-binding proteins, principally parvalbumin, but also calbindin and calretinin, as well as glutamate decarboxylase 67 kDa isoform, were pannexin1-positive. Pannexin1 labeling was found in cells which are known to exhibit spontaneous and synchronous discharge, such as neurons of the inferior olivary complex and the reticular thalamic nucleus, and also in neurons whose electrical activity is not coupled with neighboring cells, such as motoneurons of the spinal cord. The analysis of cellular localization showed puncta that surrounded cell bodies (e.g. the pyramidal cells of hippocampus) or restricted areas inside the cell bodies (e.g. the spinal motoneurons). In Bergmann glial cells the staining was present as fine grains that covered a large part of the cellular surface. Pannexin1 stained cells that previous studies have reported as expressing connexin36, another protein forming gap junction channels. Thus, it was possible that these two proteins could be integrated in the same functions. Since connexin36 expression levels change after seizures, we examined the expression of both pannexin1 and connexin36 in cerebral cortex, hippocampus, cerebellum and brain stem at different time intervals (2, 4 and 8 h) after i.p. injection of 4-aminopyridine, which resulted in systemic seizures. The only modification of the expression levels observed in this study concerned the progressive decrement of the connexin36 in the hippocampus, while pannexin1 expression was unchanged. This finding suggested that pannexin1 and connexin36 are involved in different functional roles or that they are expressed in different cell types and that only those expressing the Cx36 are induced to apoptosis by epileptic seizures.
AB - The expression pattern of pannexin1, a gene coding for a protein that forms gap junction channels, was studied as both mRNA and protein in the CNS of adult mouse. Pannexin1 was widely expressed in the CNS by neuronal cell types but not glial cells, except for Bergmann glial cells of the cerebellar cortex. Cells positive to Ca-binding proteins, principally parvalbumin, but also calbindin and calretinin, as well as glutamate decarboxylase 67 kDa isoform, were pannexin1-positive. Pannexin1 labeling was found in cells which are known to exhibit spontaneous and synchronous discharge, such as neurons of the inferior olivary complex and the reticular thalamic nucleus, and also in neurons whose electrical activity is not coupled with neighboring cells, such as motoneurons of the spinal cord. The analysis of cellular localization showed puncta that surrounded cell bodies (e.g. the pyramidal cells of hippocampus) or restricted areas inside the cell bodies (e.g. the spinal motoneurons). In Bergmann glial cells the staining was present as fine grains that covered a large part of the cellular surface. Pannexin1 stained cells that previous studies have reported as expressing connexin36, another protein forming gap junction channels. Thus, it was possible that these two proteins could be integrated in the same functions. Since connexin36 expression levels change after seizures, we examined the expression of both pannexin1 and connexin36 in cerebral cortex, hippocampus, cerebellum and brain stem at different time intervals (2, 4 and 8 h) after i.p. injection of 4-aminopyridine, which resulted in systemic seizures. The only modification of the expression levels observed in this study concerned the progressive decrement of the connexin36 in the hippocampus, while pannexin1 expression was unchanged. This finding suggested that pannexin1 and connexin36 are involved in different functional roles or that they are expressed in different cell types and that only those expressing the Cx36 are induced to apoptosis by epileptic seizures.
KW - Brain
KW - Mouse
KW - Neurons
KW - Pannexin
UR - http://www.scopus.com/inward/record.url?scp=33748929432&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748929432&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2006.03.053
DO - 10.1016/j.neuroscience.2006.03.053
M3 - Article
C2 - 16690210
AN - SCOPUS:33748929432
VL - 141
SP - 167
EP - 178
JO - Neuroscience
JF - Neuroscience
SN - 0306-4522
IS - 1
ER -