FAM46C and FNDC3A are multiple myeloma tumor suppressors that act in concert to impair clearing of protein aggregates and autophagy: Cancer Research

N. Manfrini, M. Mancino, A. Miluzio, S. Oliveto, M. Balestra, P. Calamita, R. Alfieri, R.L. Rossi, M. Sassoe-Pognetto, C. Salio, A. Cuomo, T. Bonaldi, M. Manfredi, E. Marengo, E. Ranzato, S. Martinotti, D. Cittaro, G. Tonon, S. Biffo

Research output: Contribution to journalArticlepeer-review

Abstract

Multiple myeloma is a plasma cell neoplasm characterized by the production of unfolded immunoglobulins, which cause endoplasmic reticulum (ER) stress and sensitivity to proteasome inhibition. The genomic landscape of multiple myeloma is characterized by the loss of several genes rarely mutated in other cancers that may underline specific weaknesses of multiple myeloma cells. One of these is FAM46C that is lost in more than 10% of patients with multiple myeloma. We show here that FAM46C is part of a new complex containing the ER-associated protein FNDC3A, which regulates trafficking and secretion and, by impairing autophagy, exacerbates proteostatic stress. Reconstitution of FAM46C in multiple myeloma cells that had lost it induced apoptosis and ER stress. Apoptosis was preceded by an increase of intracellular aggregates, which was not linked to increased translation of IgG mRNA, but rather to impairment of autophagy. Biochemical analysis showed that FAM46C requires interaction with ER bound protein FNDC3A to reside in the cytoplasmic side of the ER. FNDC3A was lost in some multiple myeloma cell lines. Importantly, depletion of FNDC3A increased the fitness of FAM46C-expressing cells and expression of FNDC3A in cells that had lost it recapitulated the effects of FAM46C, inducing aggregates and apoptosis. FAM46C and FNDC3A formed a complex that modulates secretion routes, increasing lysosome exocytosis. The cellular landscape generated by FAM46C/ FNDC3A expression predicted sensitivity to sphingosine kinase inhibition. These results suggest that multiple myeloma cells remodel their trafficking machinery to cope with ER stress. © 2020 American Association for Cancer Research.
Original languageEnglish
Pages (from-to)4693-4706
Number of pages14
JournalCancer Res.
Volume80
Issue number21
DOIs
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'FAM46C and FNDC3A are multiple myeloma tumor suppressors that act in concert to impair clearing of protein aggregates and autophagy: Cancer Research'. Together they form a unique fingerprint.

Cite this