Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy.

Changhan Lee, Lizzia Raffaghello, Sebastian Brandhorst, Fernando M. Safdie, Giovanna Bianchi, Alejandro Martin-Montalvo, Vito Pistoia, Min Wei, Saewon Hwang, Annalisa Merlino, Laura Emionite, Rafael de Cabo, Valter D. Longo

Research output: Contribution to journalArticlepeer-review

Abstract

Short-term starvation (or fasting) protects normal cells, mice, and potentially humans from the harmful side effects of a variety of chemotherapy drugs. Here, we show that treatment with starvation conditions sensitized yeast cells (Saccharomyces cerevisiae) expressing the oncogene-like RAS2(val19) to oxidative stress and 15 of 17 mammalian cancer cell lines to chemotherapeutic agents. Cycles of starvation were as effective as chemotherapeutic agents in delaying progression of different tumors and increased the effectiveness of these drugs against melanoma, glioma, and breast cancer cells. In mouse models of neuroblastoma, fasting cycles plus chemotherapy drugs--but not either treatment alone--resulted in long-term cancer-free survival. In 4T1 breast cancer cells, short-term starvation resulted in increased phosphorylation of the stress-sensitizing Akt and S6 kinases, increased oxidative stress, caspase-3 cleavage, DNA damage, and apoptosis. These studies suggest that multiple cycles of fasting promote differential stress sensitization in a wide range of tumors and could potentially replace or augment the efficacy of certain chemotherapy drugs in the treatment of various cancers.

Original languageEnglish
JournalScience Translational Medicine
Volume4
Issue number124
DOIs
Publication statusPublished - Mar 7 2012

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy.'. Together they form a unique fingerprint.

Cite this