Four new mutations in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causing x-linked sideroblastic anemia: Increased pyridoxine responsiveness after removal of iron overload by phlebotomy and coinheritance of hereditary hemochromatosis

Philip D. Cotter, Alison May, Liping Li, A. I. Al-Sabah, Edward J. Fitzsimons, Mario Cazzola, David F. Bishop

Research output: Contribution to journalArticlepeer-review

Abstract

X-linked sideroblastic anemia (XLSA) in four unrelated male probands was caused by missense mutations in the erythroid-specific 5-aminolevulinate synthase gene (ALAS2). All were new mutations: T647C, C1283T, G1395A, and C1406T predicting amino acid substitutions Y199H, R411C, R448Q, and R452C. All probands were clinically pyridoxine-responsive. The mutation Y199H was shown to be the first de novo XLSA mutation and occurred in a gamete of the proband's maternal grandfather. There was a significantly higher frequency of coinheritance of the hereditary hemochromatosis (HH) HFE mutant allele C282Y in 18 unrelated XLSA hemizygotes than found in the normal population, indicating a role for coinheritance of HFE alleles in the expression of this disorder. One proband (Y199H) with severe and early iron loading coinherited HH as a C282Y homozygote. The clinical and hematologic histories of two XLSA probands suggest that iron overload suppresses pyridoxine responsiveness. Notably, reversal of the iron overload in the Y199H proband by phlebotomy resulted in higher hemoglobin concentrations during pyridoxine supplementation. The proband with the R452C mutation was symptom-free on occasional phlebotomy and daily pyridoxine. These studies indicate the value of combined phlebotomy and pyridoxine supplementation in the management of XLSA probands in order to prevent a downward spiral of iron toxicity and refractory anemia.

Original languageEnglish
Pages (from-to)1757-1769
Number of pages13
JournalBlood
Volume93
Issue number5
Publication statusPublished - Mar 1 1999

ASJC Scopus subject areas

  • Hematology

Fingerprint Dive into the research topics of 'Four new mutations in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causing x-linked sideroblastic anemia: Increased pyridoxine responsiveness after removal of iron overload by phlebotomy and coinheritance of hereditary hemochromatosis'. Together they form a unique fingerprint.

Cite this