Fractal analysis of plaque border, a novel method for the quantification of atherosclerotic plaque contour irregularity, is associated with pro-atherogenic plasma lipid profile in subjects with non-obstructive carotid stenoses

Francesco Moroni, M Magnoni, V Vergani, E Ammirati, PG Camici

Research output: Contribution to journalArticle

Abstract

Background and aims Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Methods and results Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Conclusions Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation. © 2018 Moroni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Original languageEnglish
Article numbere0192600
JournalPLoS One
Volume13
Issue number2
DOIs
Publication statusPublished - 2018

Fingerprint

Fractals
Carotid Stenosis
fractal dimensions
Atherosclerotic Plaques
Fractal dimension
blood lipids
high density lipoprotein
HDL Lipoproteins
Lipids
Plasmas
methodology
Triglycerides
risk factors
triacylglycerols
LDL Lipoproteins
low density lipoprotein
atherosclerosis
quantitative analysis
Ultrasonics
Cholesterol

Cite this

@article{91bcaec3436d4818b36ea716c8003c94,
title = "Fractal analysis of plaque border, a novel method for the quantification of atherosclerotic plaque contour irregularity, is associated with pro-atherogenic plasma lipid profile in subjects with non-obstructive carotid stenoses",
abstract = "Background and aims Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Methods and results Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Conclusions Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation. {\circledC} 2018 Moroni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",
author = "Francesco Moroni and M Magnoni and V Vergani and E Ammirati and PG Camici",
year = "2018",
doi = "10.1371/journal.pone.0192600",
language = "English",
volume = "13",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "2",

}

TY - JOUR

T1 - Fractal analysis of plaque border, a novel method for the quantification of atherosclerotic plaque contour irregularity, is associated with pro-atherogenic plasma lipid profile in subjects with non-obstructive carotid stenoses

AU - Moroni, Francesco

AU - Magnoni, M

AU - Vergani, V

AU - Ammirati, E

AU - Camici, PG

PY - 2018

Y1 - 2018

N2 - Background and aims Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Methods and results Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Conclusions Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation. © 2018 Moroni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

AB - Background and aims Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Methods and results Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Conclusions Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation. © 2018 Moroni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

U2 - 10.1371/journal.pone.0192600

DO - 10.1371/journal.pone.0192600

M3 - Article

VL - 13

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 2

M1 - e0192600

ER -