Fretting wear in a modular neck hip prosthesis

Research output: Contribution to journalArticlepeer-review

Abstract

In vitro cyclic load fretting tests were conducted on a prototype of a cementless, modular neck, hip prosthesis. The study had three major objectives: to determine the amount of fretted material in the tapered-neck joint under various load cycle amplitudes, to determine the fretting damage evolution, and to determine the effect of different-sized stem bodies on the production of debris. All the tests produced some fretting microdamage on the tapered surface although the extent was quite different among test groups. The amount of abraded material increased almost linearly with the applied load magnitude but not with the number of load cycles. The amount of weight loss was higher in the large stem bodies than in the small ones. Weight loss ranged from 0.28 ± 0.10 mg for small stem bodies loaded 5.5 million times up to 2300N to 2.54 ± 0.53 mg for large stem bodies located 20 million times up to 3300N. Considering the large-size stem results, and assuming one million load cycles between 300N and 3300N to be the average yearly load history, the modular neck tapered joint would produce 0.6 mg/year of metal debris. The clinical impact of this observation is unknown; however, some of the literature on the presence of metal in patient tissues and fluids supports the hypothesis that a normal and stable prosthesis is likely to produce less than 10 mg/year of metal debris. Thus, a further production of 0.6 mg/year due to the modular neck should not have any significant effect.

Original languageEnglish
Pages (from-to)207-216
Number of pages10
JournalJournal of Biomedical Materials Research
Volume35
Issue number2
DOIs
Publication statusPublished - May 1997

ASJC Scopus subject areas

  • Biomedical Engineering
  • Biomaterials

Fingerprint Dive into the research topics of 'Fretting wear in a modular neck hip prosthesis'. Together they form a unique fingerprint.

Cite this