Abstract
Original language | English |
---|---|
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | Biochimica et Biophysica Acta - Reviews on Cancer |
Volume | 1867 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Cancer-associated fibroblasts
- Cell-cell communications
- Colorectal cancer
- Immune cells
- Stromal cells
- Tumour microenvironment
Fingerprint
Dive into the research topics of 'Friend or foe?: The tumour microenvironment dilemma in colorectal cancer'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Friend or foe?: The tumour microenvironment dilemma in colorectal cancer. / Colangelo, Tommaso; Polcaro, G.; Muccillo, L. et al.
In: Biochimica et Biophysica Acta - Reviews on Cancer, Vol. 1867, No. 1, 2017, p. 1-18.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Friend or foe?: The tumour microenvironment dilemma in colorectal cancer
AU - Colangelo, Tommaso
AU - Polcaro, G.
AU - Muccillo, L.
AU - D'Agostino, G.
AU - Rosato, V.
AU - Ziccardi, P.
AU - Lupo, A.
AU - Mazzoccoli, G.
AU - Sabatino, Lina
AU - Colantuoni, Vittorio
N1 - Export Date: 22 March 2017 CODEN: BBACE Correspondence Address: Mazzoccoli, G.; IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy References: Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674; Quail, F.D., Joyce, J.A., Microenvironmental regulation of tumor progression and metastasis (2013) Nat. Med., 19. , e1423; Fearon, E.R., Vogelstein, B., A genetic model for colorectal tumorigenesis (1990) Cell, 61, pp. 759-767; Fearon, E.R., Molecular genetics of colorectal cancer (2011) Annu. Rev. Pathol., 6, pp. 479-507; Cunningham, D., Atkin, W., Lenz, H.J., Lynch, H.T., Minsky, B., Nordlinger, B., Starling, N., Colorectal cancer (2010) Lancet, 375, pp. 1030-1047; Tenesa, A., Dunlop, M.G., New insights into the aetiology of colorectal cancer from genome-wide association studies (2009) Nat. Rev. Genet., 10, pp. 353-358; Markowitz, S.D., Bertagnolli, M.M., Molecular origins of cancer: molecular basis of colorectal cancer (2009) N. Engl. J. Med., 361, pp. 2449-2460; Boland, C.R., Goel, A., Microsatellite instability in colorectal cancer (2010) Gastroenterology, 138, pp. 2073-2087; Issa, J.P., Shen, L., Toyota, M., CIMP, at last (2005) Gastroenterology, 129, pp. 1121-1124; Esteller, M., Molecular origins of cancer: epigenetics in cancer (2008) N. Engl. J. Med., 358, pp. 1096-1148; Berman, B.P., Weisenberger, D.J., Aman, J.F., Hinoue, T., Ramjan, Z., Liu, Y., Noushmehr, H., Laird, P.W., Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina associated domains (2012) Nat. Genet., 44, pp. 40-46; Boland, C.R., Komarova, N.L., Goel, A., Chromosomal instability and cancer: not just one CINgle mechanism (2009) Gut, 58, pp. 163-164; Calon, A., Lonardo, E., Berenguer-Llrgo, A., Espinet, E., Hernando-Momblona, X., Iglesias, M., Sevillano, M., Batlle, E., Stromal gene expression defines poor-prognosis subtypes in colorectal cancer (2015) Nat. Genet., 47, pp. 320-329; Isella, C., Terrasi, A., Bellomo, S.E., Petti, C., Galatola, G., Muratore, A., Mellano, A., Medico, E., Stromal contribution to the colorectal cancer transcriptome (2015) Nat. Genet., 47, pp. 312-319; Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Soneson, C., Marisa, L., Roepman, P., Tejpa, S., The consensus molecular subtypes of colorectal cancer (2015) Nat. Med., 21, pp. 1350-1356; Giannakis, M., Mu, X.J., Shukla, S.A., Qian, Z.R., Cohen, O., Nishihara, R., Bahl, S., Garraway, L.A., Genomic correlates of immune-cell infiltrates in colorectal carcinoma (2016) Cell Rep., 15, pp. 857-865; Becht, E., de Reyniès, A., Giraldo, N.A., Pilati, C., Buttard, B., Lacroix, L., Selves, J., Fridman, W.H., Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy (2016) Clin. Cancer Res., , (Epub ahead of print); Karagiannis, G.S., Poutahidis, T., Erdman, S.E., Kirsch, R., Riddell, R.H., Diamandis, E.P., Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue (2012) Mol. Cancer Res., 10, pp. 1403-1418; Cirri, P., Chiarugi, P., Cancer associated fibroblasts: the dark side of the coin (2011) Am. J. Cancer Res., 4, pp. 482-497; Hawinkels, L.J., Paauwe, M., Verspaget, H.W., Wiercinska, E., Van Der Zon, J.M., Van Der Ploeg, K., Koelink, P.J., Sier, C.F., Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts (2014) Oncogene, 33, pp. 97-107; Todaro, M., Gaggianesi, M., Catalano, V., Benfante, A., Iovino, F., Biffoni, M., Apuzzo, T., Stassi, G., CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis (2014) Cell Stem Cell, 14, pp. 342-356; Lotti, F., Jarrar, A.M., Pai, R.K., Hitomi, M., Lathia, J., Mace, A., Gantt, G.A., Jr., Rich, J.N., Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A (2013) J. Exp. Med., 210, pp. 2851-2872; Gascard, P., Tlsty, T.D., Carcinoma-associated fibroblasts: orchestrating the composition of malignancy (2016) Genes Dev., 30, pp. 1002-1019; Paunescu, V., Bojin, F.M., Tatu, C.A., Gavriliuc, O.I., Rosca, A., Gruia, A.T., Tanasie, G., Vermesan, S., Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences (2011) J. Cell. Mol. Med., 15, pp. 635-646; Chen, S.X., Xu, X.E., Wang, X.Q., Cui, S.J., Xu, L.L., Jiang, Y.H., Zhang, Y., Yang, P.Y., Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation (2014) J. Proteome, 110, pp. 155-171; Augsten, M., Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment (2014) Front. Oncol., 4. , e62; Herrera, M., Islam, A.B., Herrera, A., Martin, P., Garcia, V., Silva, J., Garcia, J.M., Peña, C., Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature (2013) Clin. Cancer Res., 19, pp. 5914-5926; Berdiel-Acer, M., Cuadras, D., Díaz-Maroto, N.G., Sanjuan, X., Serrano, T., Berenguer, A., Moreno, V., Molleví, D.G., A monotonic and prognostic genomic signature from fibroblasts for colorectal cancer initiation, progression, and metastasis (2014) Mol. Cancer Res., 12, pp. 1254-1266; Berdiel-Acer, M., Berenguer, A., Sanz-Pamplona, R., Cuadras, D., Sanjuan, X., Paules, M.J., Santos, C., Mollevi, D.G., A 5-gene classifier from the carcinoma-associated fibroblast transcriptomic profile and clinical outcome in colorectal cancer (2014) Oncotarget, 5, pp. 6437-6452; Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., Schreiber, R.D., Cancer immunoediting: from immunosurveillance to tumor escape (2002) Nat. Immunol., 3, pp. 991-998; Mittal, D., Gubin, M.M., Schreiber, R.D., Smyth, M.J., New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape (2014) Curr. Opin. Immunol., 27, pp. 16-25; de Visser, K.E., Eichten, A., Coussens, L.M., Paradoxical roles of the immune system during cancer development (2006) Nat. Rev. Cancer, 1, pp. 24-37; de Visser, K.E., Coussens, L.M., The inflammatory tumor microenvironment and its impact on cancer development (2006) Contrib. Microbiol., 13, pp. 118-137; Stone, K.D., Prussin, C., Metcalfe, D.D., IgE, mast cells, basophils, and eosinophils (2010) J. Allergy Clin. Immunol., 125, pp. S73-S80; Marech, I., Ammendola, M., Gadaleta, C., Zizzo, N., Oakley, C., Gadaleta, C.D., Ranieri, G., Possible biological and translational significance of mast cells density in colorectal cancer (2014) World J. Gastroenterol., 20, pp. 8910-8920; Sinnamon, M.J., Carter, K.J., Sims, L.P., Lafleur, B., Fingleton, B., Matrisian, L.M., A protective role of mast cells in intestinal tumorigenesis (2008) Carcinogenesis, 29, pp. 880-886; Malfettone, A., Silvestris, N., Saponaro, C., Ranieri, G., Russo, A., Caruso, S., Popescu, O., Mangia, A., High density of tryptase-positive mast cells in human colorectal cancer: a poor prognostic factor related to protease-activated receptor 2 expression (2013) J. Cell. Mol. Med., 17, pp. 1025-1037; Suzuki, S., Ichikawa, Y., Nakagawa, K., Kumamoto, T., Mori, R., Matsuyama, R., Takeda, K., Endo, I., High infiltration of mast cells positive to tryptase predicts worse outcome following resection of colorectal liver metastases (2015) BMC Cancer, 15, pp. 1-8; Kolaczkowska, E., Kubes, P., Neutrophil recruitment and function in health and inflammation (2013) Nat. Rev. Immunol., 13, pp. 159-175; Granot, Z., Jablonska, J., Distinct functions of neutrophil in cancer and its regulation (2015) Mediat. Inflamm., 2015. , e701067; Peddareddigari, V.G., Wang, D., DuBois, R.N., The tumor microenvironment in colorectal carcinogenesis (2010) Cancer Microenviron., 3, pp. 149-166; Arelaki, S., Arampatzioglou, A., Kambas, K., Papagoras, C., Miltiades, P., Angelidou, I., Mitsios, A., Ritis, K., Gradient infiltration of neutrophil extracellular traps in colon cancer and evidence for their involvement in tumour growth (2016) PLoS One, 11, p. 13; Pine, J.K., Morris, E., Hutchins, G.G., West, N.P., Jayne, D.G., Quirke, P., Prasad, K.R., Systemic neutrophil-to-lymphocyte ratio in colorectal cancer: the relationship to patient survival, tumour biology and local lymphocytic response to tumour (2015) Br. J. Cancer, 113, pp. 204-211; Hirohito, K., Eosinophils: multifaceted biological properties and roles in health and disease (2011) Immunol. Rev., 242, pp. 161-177; Davis, B.P., Rothenberg, M.E., Eosinophyls and cancer (2014) Cancer Immunol. Res., 2, pp. 1-8; Singh, R.K., Gupta, S., Dastidar, S., Ray, A., Cysteinyl leukotrienes and their receptors: molecular and functional characteristics (2010) Pharmacology, 85, pp. 336-349; Prizment, A.E., Vierkant, R.A., Smyrk, T.C., Tillmans, L.S., Lee, J.J., Sriramarao, P., Nelson, H.H., Limburg, P.J., Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women's Health Study (2016) Mod. Pathol., 29, pp. 516-527; Cho, H., Lim, S.J., Won, K.Y., Bae, G.E., Kim, G.Y., Min, J.W., Noh, B., Eosinophils in colorectal neoplasms associated with expression of CCL11 and CCL24 (2016) J. Pathol. Trans. Med., 50, pp. 45-51; Marone, G., Borriello, F., Varricchi, G., Genovese, A., Granata, F., Basophils: historical reflections and perspectives (2014) Chem. Immunol., 100, pp. 172-192; Karasuyama, H., Mukai, K., Obata, K., Tsujimura, Y., Wada, T., Nonredundant roles of basophils in immunity (2011) Annu. Rev. Immunol., 29, pp. 45-69; Gessner, A., Mohrs, K., Mohrs, M., Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production (2005) J. Immunol., 174, pp. 1063-1072; Manicassamy, S., Pulendran, B., Dendritic cell control of tolerogenic responses (2011) Immunol. Rev., 241, pp. 206-227; Chanmee, T., Ontong, P., Konno, K., Itano, N., Tumor-associated macrophages as major players in the tumor microenvironment (2014) Cancers, 6, pp. 1670-1690; Martinez, F.O., Gordon, S., The M1 and M2 paradigm of macrophage activation: time for reassessment (2014) F1000Prime Report 6, pp. 6-13; Stockmann, C., Schadendorf, D., Klose, R., Helfrich, I., The impact of the immune system on tumor: angiogenesis and vascular remodeling (2014) Front. Oncol., 4, pp. 1-13; Erreni, M., Mantovani, A., Allavena, P., Tumor-associated macrophages (TAM) and inflammation in colorectal cancer (2011) Cancer Microenviron., 4, pp. 141-154; Koelzer, V.H., Canonica, K., Dawson, H., Sokol, L., Karamitopoulou-Diamantis, E., Lugli, A., Zlobec, I., Phenotyping of tumor-associated macrophages in colorectal cancer: impact on single cell invasion (tumor budding) and clinicopathological outcome (2015) Oncoimmunology, 5, pp. 1-33. , e1106677; Norton, S.E., Dunn, E.T.J., McCall, J.L., Munro, F., Kemp, R.A., Gut macrophage phenotype is dependent on the tumor microenvironment in colorectal cancer (2016) Clin. Trans. Immunol., 5, pp. 1-9; Steinbach, E.C., Plevy, S.E., The role of macrophages and dendritic cells in the initiation of inflammation in IBD (2014) Inflamm. Bowel Dis., 20, pp. 166-175; Collin, M., McGovern, N., Haniffa, M., Human dendritic cell subsets (2013) Immunology, 140, pp. 22-30; Mildner, A., Jung, S., Development and function of dendritic cell subsets (2014) Immunity, 5, pp. 642-656; Roncarolo, M.G., Levings, M.K., Traversari, C., Differentiation of T regulatory cells by immature dendritic cells (2001) J. Exp. Med., 15, pp. f5-f10; Mathan, T.S.M., Figdor, C.G., Buschow, S.I., Human plasmacytoid dendritic cells: from molecules to intercellular communication network (2013) Front. Immunol., 4, pp. 1-16; Ma, Y., Shurin, G.V., Peiyuan, Z., Shurin, M.R., Dendritic cells in the cancer microenvironment (2013) J. Cancer, 4, pp. 36-44; Blanco, P., Palucka, A.K., Pascual, V., Banchereaud, J., Dendritic cells and cytokines in human inflammatory and autoimmune diseases (2008) Cytokine Growth Factor Rev., 19, pp. 41-52; Schmidt, S.V., Nino-Castro, A.C., Schultze, J.L., Regulatory dendritic cells: there is more than just immune activation (2012) Front. Immunol., 3, pp. 274-291; Gulubova, M.V., Ananiev, J.R., Vlaykova, T.I., Yovchev, Y., Tsoneva, V., Manolova, I.M., Role of dendritic cells in progression and clinical outcome of colon cancer (2012) Int. J. Color. Dis., 2, pp. 159-169; Nagorsen, D., Voigt, S., Berg, E., Stein, H., Thiel, E., Loddenkemper, C., Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival (2007) J. Transl. Med., 5, pp. 1-8; Dadabayev, A.R., Sandel, M.H., Menon, A.G., Morreau, H., Melief, C.J., Offringa, R., van der Burg, S.H., Kuppen, P.J., Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells (2004) Cancer Immunol. Immunother., 53, pp. 978-986; Sandel, M.H., Dadabayev, A.R., Menon, A.G., Morreau, H., Melief, C.J.M., Offringa, R., van der Burg, S.H., Kuppen, P.J.K., Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization (2005) Clin. Cancer Res., 11, pp. 2576-2582; Schmid, M.C., Varner, J.A., Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation (2010) J. Oncol., 2010, p. 10; Foell, D., Wittkowski, H., Vogl, T., Roth, J., S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules (2007) J. Leukoc. Biol., 81, pp. 28-37; Gabrilovich, D.I., Nagaraj, S., Myeloid-derived-suppressor cells as regulators of the immune system (2009) Nat. Rev. Immunol., 9, pp. 162-174; OuYang, L.Y., Wu, X.J., Ye, S.B., Zhang, R.X., Li, Z.L., Liao, W., Pan, Z.Z., Li, J., Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer (2015) J. Transl. Med., 13, p. 47; Pan, P.Y., Kaare, G.M., Weber, J., Choy, J.O., Wang, G., Celia, B.Y., Divino, M., Chen, S.H., Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer (2010) Cancer Res., 1, pp. 70-99; Vasquez-Dunddel, D., Pan, F., Zeng, Q., Gorbounov, M., Albesiano, E., Fu, J., Blosser, R.L., Kim, Y., STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients (2013) J. Clin. Invest., 123, pp. 1580-1589; Waldhauer, I., Steinle, A., NK cells and cancer immunosurveillance (2008) Oncogene, 27, pp. 5932-5943; Gajewski, T.F., Schreiber, H., Fu, Y.X., Innate and adaptive immune cells in the tumor microenvironment (2013) Nat. Immunol., 14, pp. 1014-1022; Gras Navarro, A., Björklund, A.T., Chekenya1, M., Therapeutic potential and challenges of natural killer cells in treatment of solid tumors (2015) Front. Immunol., 6, pp. 1-18; Vitale, M., Cantoni, C., Pietra, G., Mingari, M.C., Moretta, L., Effect of tumor cells and tumor microenvironment on NK-cell function (2014) Eur. J. Immunol., 44, pp. 1582-1592; Halama, N., Braun, M., Kahlert, C., Spille, A., Quack, C., Rahbari, N., Koch, M., Falk, C.S., Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines (2011) Clin. Cancer Res., 17, pp. 678-689; Sandel, M.H., Speetjens, F.M., Menon, A.G., Albertsson, P.A., Basse, P.H., Hokland, M., Nagelkerke, J.F., Kuppen, P.J., Natural killer cells infiltrating colorectal cancer and MHC class I expression (2005) Mol. Immunol., 42, pp. 541-546; Sconocchia, G., Eppenderberg, S., Spagnoli, G.C., Tornillo, L., Droeser, R., Caratelli, S., Ferrelli, F., Ferrone, S., NK cells and T cells cooperate during the clinical course of colorectal cancer (2014) Oncoimmunology, 3, pp. 1-6; Hoffman, W., Lakkis, F.G., Chalasani, G., B cells, antibodies and more (2016) Clin. J. Am. Soc. Nephrol., 7, pp. 137-154; Moens, L., Tangye, S.G., Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage (2014) Front. Immunol., 5, p. 65; Maddaly, R., Pai, G., Balaji, S., Sivaramakrishnan, P., Srinivasan, L., Sunder, S.S., Paul, S.F., Receptors and signaling mechanisms for B-lymphocyte activation, proliferation and differentiation—insights from both in vivo and in vitro approaches (2010) FEBS Lett., 584, pp. 4883-4894; Maletzki, C., Jahnke, A., Ostwald, C., Klar, E., Prall, F., Linnebacher, M., Ex-vivo clonally expanded B lymphocytes infiltrating colorectal carcinoma are of mature immunophenotype and produce functional IgG (2012) PLoS One, 7. , e32639; Vornhagen, A.S., Schlößer, H.A., Gryschok, L., Malcher, J., Wennhold, K., Marquez, M.G., Herbold, T., von Bergwelt-Baildon, M.S., Characterization of tumor-associated B-cell subsets in patients with colorectal cancer (2014) Oncotarget, 5, pp. 4651-4664; Berntsson, J., Nodin, B., Eberhard, J., Micke, P., Jirström, K., Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer (2016) Int. J. Cancer, 139, pp. 1129-1139; Masopust, D., Schenkel, J.M., The integration of T cell migration, differentiation and function (2013) Nat. Rev. Immunol., 13, pp. 309-320; Markman, J.L., Shiao, S.L., Impact of the immune system and immunotherapy in colorectal cancer (2015) J. Gastrointest. Oncol., 6, pp. 208-223; Deschoolmeester, V., Baay, M., Van Marck, E., Weyler, J., Vermeulen, P., Lardon, F., Vermorken, J.B., Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients (2010) BMC Immunol., 11, p. 19; Koelzer, V.H., Lugli, A., Dawson, H., Hädrich, M., Berger, M.D., Borner, M., Mallaev, M., Inderbitzin, D., CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival (2014) J. Transl. Med., 12, p. 81; Pennock, N.D., White, J.T., Cross, E.W., Cheney, E.E., Tamburini, B.A., Kedl, R.M., T cell responses: naïve to memory and everything in between (2013) Adv. Physiol. Educ., 37, pp. 273-283; Zhu, J., Yamane, H., Paul, W.E., Differentiation of effector CD4 T cell populations (2010) Annu. Rev. Immunol., 28, pp. 445-489; Tosolini, M., Kirilovsky, A., Mlecnik, B., Fredriksen, T., Mauger, S., Bindea, G., Berger, A., Galon, J., Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer (2011) Cancer Res., 71, pp. 1263-1271; Housseau, F., Wu, S., Wick, E.C., Fan, H., Wu, X., Llosa, N.J., Smith, K.N., Sears, C.L., Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis (2016) Cancer Res., 76, pp. 2115-2124; Kryczek, I., Banerjee, M., Cheng, P., Vatan, L., Szeliga, W., Wei, S., Huang, E., Zou, W., Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments (2009) Blood, 114, pp. 1141-1149; Facciabene, A., Motz, G.T., Coukos, G., T-regulatory cells: key players in tumor immune escape and angiogenesis (2012) Cancer Res., 72, pp. 2162-2171; Zhang, X., Kelaria, S., Kerstetter, J., Wang, J., The functional and prognostic implications of regulatory T cells in colorectal carcinoma (2015) J. Gastrointest. Oncol., 3, pp. 307-313; Salama, P., Phillips, M., Grieu, F., Morris, M., Zeps, N., Joseph, D., Platell, C., Iacopetta, B., Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer (2009) J. Clin. Oncol., 27, pp. 186-192; Saito, T., Nishikawa, H., Wada, H., Nagano, Y., Sugiyama, D., Atarashi, K., Maeda, Y., Sakaguchi, S., Two FOXP3(+) CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers (2016) Nat. Med., 6, pp. 679-684; Mousa, L., Salem, M.E., Mikhail, S., Biomarkers of angiogenesis in colorectal cancer (2015) Biomark Cancer, 7, pp. 13-19; Dudley, A.C., Tumor endothelial cells (2012) Cold Spring Harb. Perspect. Med., 2, p. a006536; Ribeiro, A.L., Okamoto, O.K., Combined effects of pericytes in the tumor microenvironment (2015) Stem Cells Int., 2015. , Article ID 868475; Raza, A., Franklin, M., Dudek, A.Z., Pericytes and vessel maturation during tumor angiogenesis and metastasis (2010) Am. J. Hematol., 85, pp. 593-598; Wei, S.C., Tsao, P.N., Weng, M.T., Cao, Z., Wong, J.M., Flt-1 in colorectal cancer cells is required for the tumor invasive effect of placental growth factor through a p38-MMP9 pathway (2013) J. Biomed. Sci., 21, pp. 20-39; McCarty, M.F., Somcio, R.J., Stoeltzing, O., Wey, J., Fan, F., Liu, W., Bucana, C., Ellis, L.M., Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content (2007) J. Clin. Invest., 117, pp. 2114-2122; Lu, J., Ye, X., Fan, F., Xia, L., Bhattacharya, R., Bellister, S., Tozzi, F., Ellis, L.M., Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1 (2013) Cancer Cell, 23, pp. 171-185; Cima, I., Li Kong, S., Sengupta, D., Tan, I.B., Phyo, W.M., Lee, D., Hu, M., Tan, M.H., Tumor-derived circulating endothelial cell clusters in colorectal cancer (2016) Sci. Transl. Med., 8. , 345ra89; Brücher, B.L., Jamall, I.S., Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment (2014) Cell. Physiol. Biochem., 34, pp. 213-243; Langlois, S., Cowan, K.N., Shao, Q., Cowan, B.J., Laird, D.W., The tumor-suppressive function of Connexin43 in keratinocytes is mediated in part via interaction with caveolin-1 (2010) Cancer Res., 70, pp. 4222-4232; Dubina, M.V., Iatckii, N.A., Popov, D.E., Vasil'ev, S.V., Krutovskikh, V.A., Connexin 43, but not connexin 32, is mutated at advanced stages of human sporadic colon cancer (2002) Oncogene, 21, pp. 4296-4992; Brañes, M., Contreras, J., Sa'ez, J., Activation of human polymorphonuclear cells induces formation of functional gap junctions and expression of connexins (2002) Med. Sci. Monit., 8. , BR313; Gonzalez, H.E., Garcés, E.A.E.G., Solis, N., Pizarro, M., Accatino, L., Sa'ez, J.C., Regulation of hepatic connexins in cholestasis: possible involvement of Kupffer cells and inflammatory mediators (2002) Am. J. Physiol. Gastrointest. Liver Physiol., 282. , G991; Al-Ghadban, S., Kaissi, S., Homaidan, F.R., Naim, H.Y., El-Sabban, M.E., Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease (2016) Sci. Rep., 6. , Article number: 29783; Zhang, H.G., Grizzle, W.E., Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions (2014) Am. J. Path, 184, pp. 28-41; D'Souza-Schorey, C., Clancy, J.W., Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers (2015) Genes Dev., 26, pp. 1287-1299; Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., Nagata, S., Identification of Tim4 as a phosphatidylserine receptor (2007) Nature, 450, pp. 435-439; Segura, E., Nicco, C., Lombard, B., Veron, P., Raposo, G., Batteux, F., Amigorena, S., Théry, C., ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming (2005) Blood, 106, pp. 216-223; Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., Xu, W., Exosomes in cancer: small particle, big player (2015) J. Hematol. Oncol., 8, p. 83; Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J.P., Boireau, W., Ghiringhelli, F., Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells (2010) J. Clin. Invest., 120, pp. 457-471; Soldevilla, B., Rodriguez, M., San Millan, C., Garcia, V., Fernandez-Perianez, R., Gil-Calderon, B., Martín, P., Domínguez, G., Tumor-derived exosomes are enriched in DeltaNp73, which promotes oncogenic potential in acceptor cells and correlates with patient survival (2014) Hum. Mol. Genet., 23, pp. 467-478; Krol, J., Loedige, I., Filipowicz, W., The widespread regulation of microRNA biogenesis, function and decay (2010) Nat. Rev. Genet., 11, pp. 597-610; Colangelo, T., Polcaro, G., Ziccardi, P., Muccillo, L., Galgani, M., Pucci, B., Milone, M.R., Colantuoni, V., The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells (2016) Cell Death Dis., 7. , e2108; Colangelo, T., Fucci, A., Votino, C., Sabatino, L., Pancione, M., Laudanna, C., Binaschi, M., Colantuoni, V., MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer (2013) Neoplasia, 15, pp. 1218-1231; Schwarzenbach, H., Nishida, N., Calin, G.A., Pantel, K., Clinical relevance of circulating cell-free microRNAs in cancer (2014) Nat. Rev. Clin. Oncol., 3, pp. 145-156; Okugawa, Y., Toiyama, Y., Goel, A., An update on microRNAs as colorectal cancer biomarkers: where are we and what's next? (2014) Expert. Rev. Mol. Diagn., 14, pp. 999-1021; Yamada, A., Horimatsu, T., Okugawa, Y., Nishida, N., Honjo, H., Ida, H., Kou, T., Goel, A., Serum miR-21, miR-29a and miR-125b are promising biomarkers for the early detection of colorectal neoplasia (2015) Clin. Cancer Res., 21, pp. 4234-4242; Toiyama, Y., Takahashi, M., Hur, K., Nagasaka, T., Tanaka, K., Inoue, Y., Kusunoki, M., Goel, A., Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer (2013) J. Natl. Cancer Inst., 105, pp. 849-859; Ogata-Kawata, H., Izumiya, M., Kurioka, D., Honma, Y., Yamada, Y., Furuta, K., Gunji, T., Tsuchiya, N., Circulating exosomal microRNAs as biomarkers of colon cancer (2014) PLoS One, 9, pp. 1-9; Matsumura, T., Sugimachi, K., Iinuma, H., Takahashi, Y., Kurashige, J., Sawada, G., Ueda, M., Mimori, K., Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer (2015) Br. J. Cancer, 113, pp. 275-281; Yu, S., Liu, C., Su, K., Wang, J., Liu, Y., Zhang, L., Li, C., Zhang, H.G., Tumor exosomes inhibit differentiation of bone marrow dendritic cells (2007) J. Immunol., 178, pp. 6867-6875; Gu, J., Qian, H., Shen, L., Zhang, X., Zhu, W., Huang, L., Yan, Y., Xu, W., Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through (2012) TGF-b/Smad Pathway, 7. , e52465; Boelens, M.C., Wu, T.J., Nabet, B.Y., Xu, B., Qiu, Y., Yoon, T., Azzam, D.J., Minn, A.J., Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways (2014) Cell, 159, pp. 499-513; Chiodoni, C., Colombo, M.P., Sangaletti, S., Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis (2010) Cancer Metastasis Rev., 29, pp. 295-307; Bonnans, C., Chou, J., Werb, Z., Remodelling the extracellular matrix in development and disease (2014) Nat. Rev. Mol. Cell Biol., 15, pp. 786-801; Gilkes, D.M., Semenza, G.L., Wirtz, D., Hypoxia and the extracellular matrix: drivers of tumour metastasis (2014) Nat. Rev. Cancer, 14, pp. 430-439; Tournigand, C., Chibaudel, B., Samson, B., Scheithauer, W., Vernerey, D., Mésange, P., Lledo, G., de Gramont, A., Bevacizumab with or without erlotinib as maintenance therapy in patients with metastatic colorectal cancer (GERCOR DREAM; OPTIMOX3): a randomised, open-label, phase 3 trial (2015) Lancet Oncol., 16, pp. 1493-1505; Lambrechts, D., Thienpont, B., Thuillier, V., Sagaert, X., Moisse, M., Peuteman, G., Pericay, C., Van Cutsem, E., Evaluation of efficacy and safety markers in a phase II study of metastatic colorectal cancer treated with aflibercept in the first-line setting (2015) Br. J. Cancer, 113, pp. 1027-1034; Al-Shamsi, H.O., Alhazzani, W., Wolff, R.A., Extended RAS testing in metastatic colorectal cancer—refining the predictive molecular biomarkers (2015) J. Gastrointest. Oncol., 3, pp. 314-321; Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A.D., Skora, A.D., Diaz, L.A., PD-1 blockade in tumors with mismatch-repair deficiency dung (2015) N. Engl. J. Med., 372, pp. 2509-2520; Sanmamed, M.F., Rodriguez, I., Schalper, K.A., Oñate, C., Azpilikueta, A., Rodriguez-Ruiz, M.E., Morales-Kastresana, A., Melero, I., Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2 −/− IL2Rγnull immunodeficient mice (2015) Cancer Res., 75, pp. 3466-3478; Mazard, T., Causse, A., Simony, J., Leconet, W., Vezzio-Vie, N., Torro, A., Jarlier, M., Gongora, C., Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump (2013) Mol. Cancer Ther., 12, pp. 2121-2134; Song, E.K., Tai, W.M., Messersmith, W.A., Bagby, S., Purkey, A., Quackenbush, K.S., Pitts, T.M., Arcaroli, J.J., Potent antitumor activity of cabozantinib, a c-MET and VEGFR2 inhibitor, in a colorectal cancer patient-derived tumor explant model (2015) Int. J. Cancer, 136, pp. 1967-1975; Ohshio, Y., Teramoto, K., Hanaoka, J., Tezuka, N., Itoh, Y., Asai, T., Daigo, Y., Ogasawara, K., Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine (2015) Cancer Sci., 106, pp. 134-142; Uyl-de Groot, C.A., Vermonken, J.B., Jr Hanna, M.G., Verboom, P., Groot, M.T., Bonsel, G.J., Meijer, C.J., Pinedo, H.M., Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits (2005) Vaccine, 23, pp. 2379-2387; Hara, M., Nagasaki, T., Shiga, K., Takeyama, H., Suppression of cancer-associated fibroblasts and endothelial cells by itraconazole in bevacizumab-resistant gastrointestinal cancer (2016) Anticancer Res., 36, pp. 169-177; Sankpal, U.T., Nagaraju, G.P., Gottipolu, S.R., Hurtado, M., Jordan, C.G., Simecka, J.W., Shoji, M., Basha, R., Combination of Tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species (2016) Oncotarget, 7, pp. 3186-3200; Brennen, W.N., Rosen, D.M., Wang, H., Isaacs, J.T., Denmeade, S.R., Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug (2012) J. Natl. Cancer Inst., 104, pp. 1320-1334; Xiang, B., Snook, A.E., Magee, M.S., Waldman, S.A., Colorectal cancer immunotherapy (2013) Discov. Med., 15, pp. 301-308; Zhang, X.A., Zhang, S., Qing, Y., Jing, Z., Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor- kappa B pathway (2015) Pharmacogn. Mag., 11, pp. 404-409; Kumar, S., Raina, K., Agarwal, C., Agarwal1, R., Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals (2014) Oncotarget, 5, pp. 4972-4989; Erzinger, M.M., Bovet, C., Hecht, K.M., Senger, S., Winiker, P., Sobotzki, N., Cristea, S., Sturla, S.J., Sulforaphane preconditioning sensitizes human colon cancer cells towards the bioreductive anticancer prodrug PR-104A (2016) PLoS One, 11. , e0150219; Pereira, F., Larriba, M.J., Munoz, A., Vitamin D and colon cancer (2012) Endocr. Relat. Cancer, 19, pp. 51-71; Zumwalt, T.J., Goel, A., Immunotherapy of metastatic colorectal cancer: prevailing challenges and new perspectives (2015) Curr. Colorectal Cancer Rep., 11 (3), pp. 125-140. , Jun 1; Catarinella, M., Monestiroli, A., Escobar, G., Fiocchi, A., Tran, N.L., Aiolfi, R., Marra, P., Sitia, G., IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment (2016) EMBO Mol. Med., 8, pp. 155-170; Ries, C.H., Cannarile, M.A., Hoves, S., Benz, J., Wartha, K., Runza, V., Rey-Giraud, F., Ruttinger, D., Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy (2014) Cancer Cell, 25, pp. 846-859; Bartkowiak, T., Curran, M.A., 4-1BB agonists: multi-potent potentiators of tumor immunity (2015) Front. Oncol., 5; Gladue, R.P., Paradis, T., Cole, S.H., Donovan, C., Nelson, R., Alpert, R., Gardner, J., Bedian, V., The CD40 agonist antibody CP-870, 893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice (2011) Cancer Immunol. Immunother., 60, pp. 1009-1017; Smyth, M.J., Ngiow, S.F., Ribas, A., Teng, M.W.L., Combination cancer immunotherapies tailored to the tumour microenvironment (2016) Nat. Rev. Clin. Oncol., 13, pp. 143-158; Guo, F., Wang, Y., Liu, J., Mok, S.C., Xue, F., Zhang, W., CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks (2016) Oncogene, 35, pp. 816-826; Shen, J., Li, Z.J., Li, L.F., Lu, L., Xiao, Z.G., Wu, W.K.K., Zhang, L., Cho, C.H., Vascular-targeted TNF-α and IFN-γ inhibits orthotopic colorectal tumor growth (2016) J. Transl. Med., 14, p. 187; Halama, N., Zoernig, I., Bertel, A., Kahlert, C., Klupp, F., Suarez-Carmona, M., Suetterlin, T., Jaeger, D., Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients (2016) Cancer Cell, 29, pp. 587-601; Wen, Y., Wang, C.T., Ma, T.T., Li, Z.Y., Zhou, L.N., Mu, B., Leng, F., Wei, Y.Q., Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model (2010) Cancer Sci., 101, pp. 2325-2332; Ben-Sasson, S.Z., Hogg, A., Hu-Li, J., Wingfield, P., Chen, X., Crank, M., Caucheteux, S., Paul, W.E., IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells (2013) J. Exp. Med., 210, pp. 491-502; Lee, Y.J., Won, T.J., Hyung, K.E., Jang, Y.W., Kim, S.J., Lee, D.I., Park, S.Y., Hwang, K.W., IL-6 induced proliferation and cytotoxic activity of CD8+ T cells is elevated by SUMO2 overexpression (2016) Pharm. Res., 39, pp. 705-712; Bogdan, C., Regulation of lymphocytes by nitric oxide (2011) Methods Mol. Biol., 677, pp. 375-393; Kmiecik, T., Otocka-Kmiecik, A., Górska-Ciebiada, M., Ciebiada, M., T lymphocytes as a target of histamine action (2012) Arch. Med. Sci., 8, pp. 154-161
PY - 2017
Y1 - 2017
N2 - The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies. © 2016
AB - The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies. © 2016
KW - Cancer-associated fibroblasts
KW - Cell-cell communications
KW - Colorectal cancer
KW - Immune cells
KW - Stromal cells
KW - Tumour microenvironment
U2 - 10.1016/j.bbcan.2016.11.001
DO - 10.1016/j.bbcan.2016.11.001
M3 - Article
VL - 1867
SP - 1
EP - 18
JO - Biochimica et Biophysica Acta - Reviews on Cancer
JF - Biochimica et Biophysica Acta - Reviews on Cancer
SN - 0304-419X
IS - 1
ER -