Abstract
Original language | English |
---|---|
Journal | Cancers |
Volume | 12 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Angiogenesis
- Bevacizumab
- Circulating biomarkers
- Colon cancer
- FGF2
- PlGF
- VEGF
- B Raf kinase
- bevacizumab
- fibroblast growth factor 2
- fluorouracil
- folinic acid
- interleukin 8
- irinotecan
- K ras protein
- monocyte chemotactic protein 3
- placental growth factor
- scatter factor
- stromal cell derived factor 1
- vasculotropin A
- vasculotropin inhibitor
- adult
- aged
- Article
- cancer prognosis
- cancer survival
- carcinogenesis
- controlled study
- disease marker
- drug efficacy
- drug safety
- enzyme linked immunosorbent assay
- exploratory research
- female
- human
- major clinical study
- male
- metastatic colorectal cancer
- overall survival
- progression free survival
Fingerprint
Dive into the research topics of 'From central to sentral (Serum angiogenesis central): Circulating predictive biomarkers to anti-VEGFR therapy'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
From central to sentral (Serum angiogenesis central): Circulating predictive biomarkers to anti-VEGFR therapy. / Giampieri, R.; Ziranu, P.; Daniele, B. et al.
In: Cancers, Vol. 12, No. 5, 2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - From central to sentral (Serum angiogenesis central): Circulating predictive biomarkers to anti-VEGFR therapy
AU - Giampieri, R.
AU - Ziranu, P.
AU - Daniele, B.
AU - Zizzi, A.
AU - Ferrari, D.
AU - Lonardi, S.
AU - Zaniboni, A.
AU - Cavanna, L.
AU - Rosati, G.
AU - Casagrande, M.
AU - Pella, N.
AU - Demurtas, L.
AU - Zampino, M.G.
AU - Sozzi, P.
AU - Pusceddu, V.
AU - Germano, D.
AU - Lai, E.
AU - Zagonel, V.
AU - Codecà, C.
AU - Libertini, M.
AU - Puzzoni, M.
AU - Labianca, R.
AU - Cascinu, S.
AU - Scartozzi, M.
N1 - Cited By :1 Export Date: 3 March 2021 Correspondence Address: Scartozzi, M.; Medical Oncology Unit, Italy; email: marioscartozzi@gmail.com Chemicals/CAS: bevacizumab, 216974-75-3, 1438851-35-4; fibroblast growth factor 2, 106096-93-9; fluorouracil, 51-21-8; folinic acid, 58-05-9; interleukin 8, 114308-91-7; irinotecan, 100286-90-6; scatter factor, 67256-21-7, 72980-71-3; vasculotropin A, 489395-96-2 Funding text 1: The study was sponsored by Gruppo Italiano per lo Studio dei Carcinomi dell?Apparato Digerente (GISCAD) that provided the economic support for costs related to data management, statistical analysis, and the other activities of central and group coordinating centers. References: Oza, A.M., Cook, A.D., Pfisterer, J., Embleton, A., Ledermann, J.A., Pujade-Lauraine, E., Kristensen, G., Cervantes, A., Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial (2015) Lancet Oncol, 16, pp. 928-936; Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E.A., Shenkier, T., Davidson, N.E., Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer (2007) N. Engl. J. Med., 357, pp. 2666-2676; Sandler, A., Gray, R., Perry, M.C., Brahmer, J., Schiller, J.H., Dowlati, A., Lilenbaum, R., Johnson, D.H., Paclitaxel carboplatin alone or with bevacizumab for non-small-cell lung cancer (2006) N. Engl. J. Med., 355, pp. 2542-2550; Yang, J.C., Haworth, L., Sherry, R.M., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Steinberg, S.M., Rosenberg, S.A., A randomized trial of bevacizumab, an anti-vascular endothelial growth. Factor antibody, for metastatic renal cancer (2003) N. Engl. J. Med., 349, pp. 427-434; Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Holmgren, E., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer (2004) N. Engl. J. Med., 350, pp. 2335-2342; Allegra, C.J., Yothers, G., O’Connell, M.J., Sharif, S., Petrelli, N.J., Colangelo, L.H., Atkins, J.N., Goldberg, R.M., Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: Results of NSABP protocol C-08 (2011) J. Clin. Oncol., 29, pp. 11-16; Allegra, C.J., Yothers, G., O’Connell, M.J., Sharif, S., Petrelli, N.J., Lopa, S.H., Wolmark, N., Bevacizumab in stage II-III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial (2013) J. Clin. Oncol., 31, pp. 359-364; de Gramont, A., van Cutsem, E., Schmoll, H.J., Tabernero, J., Clarke, S., Moore, M.J., Cunningham, D., Rivera, F., Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): A phase 3 randomised controlled trial (2012) Lancet Oncol., 13, pp. 1225-1233. , [CrossRef]; Casanovas, O., Hicklin, D.J., Bergers, G., Hanahan, D., Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors (2005) Cancer Cell, 8, pp. 299-309; Mitsuhashi, A., Goto, H., Saijo, A., Trung, V.T., Aono, Y., Ogino, H., Kuramoto, T., Izumi, K., Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab (2015) Nat. Commun, 6, pp. 1-15; Batchelor, T.T., Sorensen, A.G., Di Tomaso, E., Zhang, W.T., Duda, D.G., Cohen, K.S., Kozak, K.R., Zhu, M., AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients (2007) Cancer Cell, 11, pp. 83-95; Jahangiri, A., de Lay, M., Miller, L.M., Carbonell, W.S., Hu, Y.L., Lu, K., Tom, M.W., Tsao, S., Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of anti-angiogenic therapy resistance (2013) Clin. Cancer Res., 19, pp. 1773-1783; Lu, K.V., Chang, J.P., Parachoniak, C.A., Pandika, M.M., Aghi, M.K., Meyronet, D., Isachenko, N., Cheresh, D.A., VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex (2012) Cancer Cell, 22, pp. 21-35; Opdenakker, G., Froyen, G., Fiten, P., Proost, P., van Damme, J., Human monocyte chemotactic protein-3 (MCP-3): Molecular cloning of the cDNA and comparison with other chemokines (1993) Biochem. Biophys. Res. Commun., 191, pp. 535-542; Huang, D., Ding, Y., Zhou, M., Rini, B.I., Petillo, D., Qian, C.N., Kahnoski, R., Teh, B.T., Interleukin-8 Mediates Resistance to Antiangiogenic Agent Sunitinib in Renal Cell Carcinoma (2010) Cancer Res, 70, pp. 1063-1071; Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Alitalo, K., A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases (1996) EMBO J, 15, pp. 290-298; Tille, J.C., Wood, J., Mandriota, S.J., Schnell, C., Ferrari, S., Mestan, J., Zhu, Z., Pepper, M.S., Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF-and basic fibroblast growth factor-induced angiogenesis In Vivo and In Vitro (2001) J. Pharmacol. Exp. Ther., 299, pp. 1073-1085; Valtola, R., Salven, P., Heikkilä, P., Taipale, J., Joensuu, H., Rehn, M., Pihlajaniemi, T., Alitalo, K., VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer (1999) Am. J. Pathol., 154, pp. 1381-1390; Benest, A.V., Harper, S.J., Herttuala, S.Y., Alitalo, K., Bates, D.O., VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis (2008) Cardiovasc. Res., 78, pp. 315-323; Lieu, C.H., Tran, H., Jiang, Z.Q., Mao, M., Overman, M.J., Lin, E., Eng, C., Heymach, J.V., The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer (2013) Plos ONE, 8; Weickhardt, A.J., Williams, D.S., Lee, C.K., Chionh, F., Simes, J., Murone, C., Wilson, K., Scott, A.M., Vascular endothelial growth factor D expression is a potential biomarker of bevacizumab benefit in colorectal cancer (2015) Br. J. Cancer, 113, pp. 37-45; Giampieri, R., Puzzoni, M., Daniele, B., Ferrari, D., Lonardi, S., Zaniboni, A., Cavanna, L., Zampino, M.G., First-line FOLFIRI and bevacizumab in patients with advanced colorectal cancer prospectively stratified according to serum LDH: Final results of the GISCAD (Italian Group for the Study of Digestive Tract Cancers) CENTRAL (ColorEctalavastiNTRiAlLdh) trial (2017) Br. J. Cancer, 117, pp. 1099-1104; Giampieri, R., Salvatore, L., Del Prete, M., Prochilo, T., D’Anzeo, M., Loretelli, C., Loupakis, F., Andrikou, K., Angiogenesis genotyping and clinical outcome during regorafenib treatment in metastatic colorectal cancer patients (2016) Sci. Rep., 6; van Cutsem, E., Tabernero, J., Lakomy, R., Prenen, H., Prausová, J., Macarulla, T., Ruff, P., Ferry, D., Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen (2012) J. Clin. Oncol., 30, pp. 3499-3506; Tabernero, J., Yoshino, T., Cohn, A.L., Obermannova, R., Bodoky, G., Garcia-Carbonero, R., Ciuleanu, T.E., Grothey, A., Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study (2015) Lancet Oncol, 16, pp. 499-508; Hurwitz, H.I., Yi, J., Ince, W., Novotny, W.F., Rosen, O., The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: Analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer (2009) Oncologist, 14, pp. 22-28; Folkman, J., Tumor angiogenesis: Therapeutic implications (1971) N. Engl. J. Med., 285, pp. 1182-1186; Bagri, A., Berry, L., Gunter, B., Singh, M., Kasman, I., Damico, L.A., Xiang, H., Hollister, B., Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy (2010) Clin. Cancer Res., 16, pp. 3887-3900; Loupakis, F., Ruzzo, A., Salvatore, L., Cremolini, C., Masi, G., Frumento, P., Schirripa, M., Canestrari, E., Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer (2011) BMC Cancer, 11; Loupakis, F., Cremolini, C., Yang, D., Salvatore, L., Zhang, W., Wakatsuki, T., Bohanes, P., Lonardi, S., Prospective validation of candidate SNPs of VEGF/VEGFR pathway in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab (2013) Plos ONE, 8; Kwon, K.A., Kim, S.H., Oh, S.Y., Lee, S., Han, J.Y., Kim, K.H., Goh, R.Y., Roh, M.S., Clinical significance of preoperative serum vascular endothelial growth factor, interleukin-6, and C-reactive protein level in colorectal cancer (2010) BMC Cancer, 10; Jürgensmeier, J.M., Schmoll, H.J., Robertson, J.D., Brooks, L., Taboada, M., Morgan, S.R., Wilson, D., Hoff, P.M., Prognostic and predictive value of VEGF, sVEGFR-2 and CEA in mCRC studies comparing cediranib, bevacizumab and chemotherapy (2013) Br. J. Cancer, 108, pp. 1316-1323; Gyanchandani, R., Alves, M.V., Myers, J.N., Kim, S., A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma (2013) Mol. Cancer Res., 11, pp. 1585-1596; Ichikawa, K., Miyano, S.W., Minoshima, Y., Matsui, J., Funahashi, Y., Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy (2020) Sci. Rep, 10, pp. 1-14; Guerrouehan, B.S., Pasquier, J., Kaoud, N.A., Maleki, M., Beauchamp, M.C., Yasmeen, A., Ghiabi, P., Saleh, A., Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer (2014) Mol. Cancer Ther., 13, pp. 3123-3136; Madsen, C.V., Steffensen, K.D., Olsen, D.A., Waldstrøm, M., Smerde, M., Adimi, P., Brandslund, I., Jakobsen, A., Serial measurements of serum PDGF-AA, PDGF-BB, FGF2, and VEGF in multiresistant ovarian cancer patients treated with bevacizumab (2012) J. Ovarian Res., 5, p. 23; Poon, R.T.P., Ng, I.O.L., Lau, C., Yu, W.C., Fan, S.T., Wong, J., Correlation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma (2001) Am. J. Surg., 182, pp. 298-304; Faridi, A., Rudlowski, C., Biesterfeld, S., Schuh, S., Rath, W., Schröder, W., Long-term follow-up and prognostic significance of angiogenic basic fibroblast growth factor (BFGF) expression in patients with breast cancer (2002) Pathol. Res. Pract, 198, pp. 1-5; George, M., Tutton, M., Abulafi, A.M., Eccles, S.A., Swift, R.I., Plasma basic fibroblast growth factor levels in colorectal cancer: A clinically useful assay? (2002) Clin. Exp. Metastasis, 19, pp. 735-738; Akl, M.R., Nagpal, P., Ayoub, N.M., Ayoub, N.M., Tai, B., Prabhu, S.A., Capac, C.M., Suh, K.S., Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies (2016) Oncotarget, 7, pp. 44735-44762; Gunsilius, E., Petzer, A., Stockhammer, G., Nussbaumer, W., Schumacher, P., Clausen, J., Gastl, G., Thrombocytes are the major source for soluble vascular endothelial growth factor in peripheral blood (2000) Oncology, 58, pp. 169-174; Zimmermann, R., Ringwald, J., Eckstein, R., EDTA plasma is unsuitable for in vivo determinations of platelet-derived angiogenic cytokines (2009) J. Immunol. Methods, 347, pp. 91-92; Hoying, J.B., Williams, S.K., Effects of basic fibroblast growth factor on human microvessel endothelial cell migration on collagen I correlates inversely with adhesion and is cell density dependent (1996) J. Cell. Physiol., 168, pp. 294-304; Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., Rusnati, M., Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis (2005) Cytokine Growth Factor Rev, 16, pp. 159-178; Haugsten, E.M., Wiedlocha, A., Olsnes, S., Wesche, J., Roles of fibroblast growth factor receptors in carcinogenesis (2010) Mol. Cancer Res., 8, pp. 1439-1452; Pietras, K., Pahler, J., Bergers, G., Hanahan, D., Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting (2008) Plos Med, 5, p. e19; Sulaiman, A., Wang, L., Bridging the divide: Preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors (2017) Oncotarget, 8, pp. 113269-113281; Prasetyanti, P.R., Medema, J.P., Intra-tumor heterogeneity from a cancer stem cell perspective (2017) Mol. Cancer, 16; Nissen, L.J., Cao, R., Hedlund, E.M., Wang, Z., Zhao, X., Wetterskog, D., Funa, K., Cao, Y., Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis (2007) J. Clin. Investig., 117, pp. 2766-2777; Wildiers, H., Guetens, G., de Boeck, G., Verbeken, E., Landuyt, B., Landuyt, W., de Bruijn, E.A., van Oosterom, A.T., Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11 (2003) Br. J. Cancer, 88, pp. 1979-1986; Moreno-Gamez, S., Hill, A.L., Rosenbloom, D.I., Petrov, D.A., Nowak, M.A., Pennings, P.S., Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance (2015) Proc. Natl. Acad. Sci. USA, 112, pp. E2874-E2883; Eisenhauera, E.A., Therasseb, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Mooney, M., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) (2009) Eur. J. Cancer, 45, pp. 228-247. , [CrossRef]
PY - 2020
Y1 - 2020
N2 - Background: In the last decade, a series of analyses failed to identify predictive biomarkers of resistance/susceptibility for anti-angiogenic drugs in metastatic colorectal cancer (mCRC). We conducted an exploratory preplanned analysis of serum pro-angiogenic factors (SErum aNgiogenesis-cenTRAL) in 72 mCRC patients enrolled in the phase II CENTRAL (ColorEctalavastiNTRiAlLdh) trial, with the aim to identify potential predictive factors for sensitivity/resistance to first line folinic acid-fluorouracil-irinotecan regimen (FOLFIRI) plus bevacizumab. Methods: First-line FOLFIRI/bevacizumab patients were prospectively assessed for the following circulating pro-angiogenic factors, evaluated with ELISA (enzyme-linked immunosorbent assay)-based technique at baseline and at every cycle: Vascular endothelial growth factor A (VEGF-A), hepatocyte growth factor (HGF), stromal derived factor-1 (SDF-1), placental derived growth factor (PlGF), fibroblast growth factor-2 (FGF-2), monocyte chemotactic protein-3 (MCP-3), interleukin-8 (IL-8). Results: Changes in circulating FGF-2 levels among different blood samples seemed to correlate with clinical outcome. Patients who experienced an increase in FGF-2 levels at the second cycle of chemotherapy compared to baseline, had a median Progression Free Survival (mPFS) of 12.85 vs. 7.57 months (Hazard Ratio—HR: 0.73, 95% Confidence Interval—CI: 0.43-1.27, p = 0.23). Similar results were seen when comparing FGF-2 concentrations between baseline and eight-week time point (mPFS 12.98 vs. 8.00 months, HR: 0.78, 95% CI: 0.46–1.33, p = 0.35). Conclusions: Our pre-planned, prospective analysis suggests that circulating FGF-2 levels’ early increase could be used as a marker to identify patients who are more likely to gain benefit from FOLFIRI/bevacizumab first-line therapy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
AB - Background: In the last decade, a series of analyses failed to identify predictive biomarkers of resistance/susceptibility for anti-angiogenic drugs in metastatic colorectal cancer (mCRC). We conducted an exploratory preplanned analysis of serum pro-angiogenic factors (SErum aNgiogenesis-cenTRAL) in 72 mCRC patients enrolled in the phase II CENTRAL (ColorEctalavastiNTRiAlLdh) trial, with the aim to identify potential predictive factors for sensitivity/resistance to first line folinic acid-fluorouracil-irinotecan regimen (FOLFIRI) plus bevacizumab. Methods: First-line FOLFIRI/bevacizumab patients were prospectively assessed for the following circulating pro-angiogenic factors, evaluated with ELISA (enzyme-linked immunosorbent assay)-based technique at baseline and at every cycle: Vascular endothelial growth factor A (VEGF-A), hepatocyte growth factor (HGF), stromal derived factor-1 (SDF-1), placental derived growth factor (PlGF), fibroblast growth factor-2 (FGF-2), monocyte chemotactic protein-3 (MCP-3), interleukin-8 (IL-8). Results: Changes in circulating FGF-2 levels among different blood samples seemed to correlate with clinical outcome. Patients who experienced an increase in FGF-2 levels at the second cycle of chemotherapy compared to baseline, had a median Progression Free Survival (mPFS) of 12.85 vs. 7.57 months (Hazard Ratio—HR: 0.73, 95% Confidence Interval—CI: 0.43-1.27, p = 0.23). Similar results were seen when comparing FGF-2 concentrations between baseline and eight-week time point (mPFS 12.98 vs. 8.00 months, HR: 0.78, 95% CI: 0.46–1.33, p = 0.35). Conclusions: Our pre-planned, prospective analysis suggests that circulating FGF-2 levels’ early increase could be used as a marker to identify patients who are more likely to gain benefit from FOLFIRI/bevacizumab first-line therapy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
KW - Angiogenesis
KW - Bevacizumab
KW - Circulating biomarkers
KW - Colon cancer
KW - FGF2
KW - PlGF
KW - VEGF
KW - B Raf kinase
KW - bevacizumab
KW - fibroblast growth factor 2
KW - fluorouracil
KW - folinic acid
KW - interleukin 8
KW - irinotecan
KW - K ras protein
KW - monocyte chemotactic protein 3
KW - placental growth factor
KW - scatter factor
KW - stromal cell derived factor 1
KW - vasculotropin A
KW - vasculotropin inhibitor
KW - adult
KW - aged
KW - Article
KW - cancer prognosis
KW - cancer survival
KW - carcinogenesis
KW - controlled study
KW - disease marker
KW - drug efficacy
KW - drug safety
KW - enzyme linked immunosorbent assay
KW - exploratory research
KW - female
KW - human
KW - major clinical study
KW - male
KW - metastatic colorectal cancer
KW - overall survival
KW - progression free survival
U2 - 10.3390/cancers12051330
DO - 10.3390/cancers12051330
M3 - Article
VL - 12
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 5
ER -