TY - JOUR
T1 - From Traditional to Targeted Immunotherapy in Myasthenia Gravis
T2 - Prospects for Research
AU - Mantegazza, Renato
AU - Antozzi, Carlo
N1 - Funding Information:
RM and CA wish to thank the Italian Association against Myasthenia (AIM). Funding. RM has been supported by an Italian Ministry of Health Grand No. RF-2016-02364384.
Publisher Copyright:
© Copyright © 2020 Mantegazza and Antozzi.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9/2
Y1 - 2020/9/2
N2 - Treatment of Myasthenia Gravis (MG) is still based on non-specific immunosuppression. Long-term high dose corticosteroids is still a major cause of side effects, in young as well as in elderly patients in whom comorbidities further increase the burden of chronic immunosuppression. Moreover, awareness of the limits of traditional therapies has led to the concept of “refractory MG.” The therapeutic approach to MG is therefore progressively evolving from the classic combination of corticosteroids and immunosuppressive drugs to new biological compounds targeting different immunopathological steps. Killing of B cells with Rituximab has been proposed and tested with positive results, particularly in patients with MuSK-associated MG. Therapeutic monoclonals against B cells at different stages of their maturation, or against molecules involved in B cell activation and function, represent a new area for further investigation. A differently targeted approach involved Eculizumab, a monoclonal antibody preventing the formation of C59b-induced MAC causing destruction of the neuromuscular junction. Data from clinical trials led to the approval of Eculizumab in the United States and Europe for MG. Since Eculizumab is a complement-targeted therapy, its use is limited to anti-acetylcholine receptor-associated MG, since anti-MuSK antibodies belong to IgG4 subclass and do not fix complement. Several anti-complement compounds are under investigation. An even more recent approach is the interference with the neonatal Fc receptor leading to a rapid reduction of circulating IgGs and hence of specific autoantibodies, an approach suitable for both anti-acetylcholine- and MuSK-associated MG. The investigation of compounds that selectively target the immune system will stimulate the search for specific biomarkers of disease activity and response to treatment, setting the basis for personalized medicine in MG.
AB - Treatment of Myasthenia Gravis (MG) is still based on non-specific immunosuppression. Long-term high dose corticosteroids is still a major cause of side effects, in young as well as in elderly patients in whom comorbidities further increase the burden of chronic immunosuppression. Moreover, awareness of the limits of traditional therapies has led to the concept of “refractory MG.” The therapeutic approach to MG is therefore progressively evolving from the classic combination of corticosteroids and immunosuppressive drugs to new biological compounds targeting different immunopathological steps. Killing of B cells with Rituximab has been proposed and tested with positive results, particularly in patients with MuSK-associated MG. Therapeutic monoclonals against B cells at different stages of their maturation, or against molecules involved in B cell activation and function, represent a new area for further investigation. A differently targeted approach involved Eculizumab, a monoclonal antibody preventing the formation of C59b-induced MAC causing destruction of the neuromuscular junction. Data from clinical trials led to the approval of Eculizumab in the United States and Europe for MG. Since Eculizumab is a complement-targeted therapy, its use is limited to anti-acetylcholine receptor-associated MG, since anti-MuSK antibodies belong to IgG4 subclass and do not fix complement. Several anti-complement compounds are under investigation. An even more recent approach is the interference with the neonatal Fc receptor leading to a rapid reduction of circulating IgGs and hence of specific autoantibodies, an approach suitable for both anti-acetylcholine- and MuSK-associated MG. The investigation of compounds that selectively target the immune system will stimulate the search for specific biomarkers of disease activity and response to treatment, setting the basis for personalized medicine in MG.
KW - autoimmunity
KW - clinical trials
KW - complement
KW - Eculizumab
KW - Fc receptor
KW - monoclonal antibodies
KW - myasthenia gravis
KW - Rituximab
UR - http://www.scopus.com/inward/record.url?scp=85091009465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091009465&partnerID=8YFLogxK
U2 - 10.3389/fneur.2020.00981
DO - 10.3389/fneur.2020.00981
M3 - Review article
AN - SCOPUS:85091009465
VL - 11
JO - Frontiers in Neurology
JF - Frontiers in Neurology
SN - 1664-2295
M1 - 981
ER -