TY - JOUR
T1 - FTIR spectral signatures of mouse antral oocytes
T2 - Molecular markers of oocyte maturation and developmental competence
AU - Ami, Diletta
AU - Mereghetti, Paolo
AU - Natalello, Antonino
AU - Doglia, Silvia Maria
AU - Zanoni, Mario
AU - Redi, Carlo Alberto
AU - Monti, Manuela
PY - 2011/6
Y1 - 2011/6
N2 - Mammalian antral oocytes with a Hoescht-positive DNA ring around the nucleolus (SN) are able to resume meiosis and to fully support the embryonic development, while oocytes with a non-surrounded nucleolus (NSN) cannot. Here, we applied FTIR microspectroscopy to characterize single SN and NSN mouse oocytes in order to try to elucidate some aspects of the mechanisms behind the different chromatin organization that impairs the full development of NSN oocyte-derived embryos. To this aim, oocytes were measured at three different stages of their maturation: just after isolation and classification as SN and NSN oocytes (time 0); after 10h of in vitro maturation, i.e. at the completion of the metaphase I (time 1); and after 20h of in vitro maturation, i.e. at the completion of the metaphase II (time 2). Significant spectral differences in the lipid (3050-2800cm-1) and protein (1700-1600cm-1) absorption regions were found between the two types of oocytes and among the different stages of maturation within the same oocyte type. Moreover, dramatic changes in nucleic acid content, concerning mainly the extent of transcription and polyadenylation, were detected in particular between 1000 and 800cm-1. The use of the multivariate principal component-linear discriminant analysis (PCA-LDA) enabled us to identify the maturation stage in which the separation between the two types of oocytes took place, finding as the most discriminating wavenumbers those associated to transcriptional activity and polyadenylation, in agreement with the visual analysis of the spectral data.
AB - Mammalian antral oocytes with a Hoescht-positive DNA ring around the nucleolus (SN) are able to resume meiosis and to fully support the embryonic development, while oocytes with a non-surrounded nucleolus (NSN) cannot. Here, we applied FTIR microspectroscopy to characterize single SN and NSN mouse oocytes in order to try to elucidate some aspects of the mechanisms behind the different chromatin organization that impairs the full development of NSN oocyte-derived embryos. To this aim, oocytes were measured at three different stages of their maturation: just after isolation and classification as SN and NSN oocytes (time 0); after 10h of in vitro maturation, i.e. at the completion of the metaphase I (time 1); and after 20h of in vitro maturation, i.e. at the completion of the metaphase II (time 2). Significant spectral differences in the lipid (3050-2800cm-1) and protein (1700-1600cm-1) absorption regions were found between the two types of oocytes and among the different stages of maturation within the same oocyte type. Moreover, dramatic changes in nucleic acid content, concerning mainly the extent of transcription and polyadenylation, were detected in particular between 1000 and 800cm-1. The use of the multivariate principal component-linear discriminant analysis (PCA-LDA) enabled us to identify the maturation stage in which the separation between the two types of oocytes took place, finding as the most discriminating wavenumbers those associated to transcriptional activity and polyadenylation, in agreement with the visual analysis of the spectral data.
KW - Developmental competence
KW - FTIR microspectroscopy
KW - NSN oocytes
KW - Oocyte maturation
KW - Polyadenylation
KW - SN oocytes
UR - http://www.scopus.com/inward/record.url?scp=79955652171&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955652171&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2011.03.009
DO - 10.1016/j.bbamcr.2011.03.009
M3 - Article
C2 - 21435359
AN - SCOPUS:79955652171
VL - 1813
SP - 1220
EP - 1229
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
SN - 0167-4889
IS - 6
ER -