Functional implications of microRNAs in crohn’s disease revealed by integrating microRNA and messenger RNA expression profiling

Orazio Palmieri, Teresa Maria Creanza, Fabrizio Bossa, Tiziana Latiano, Giuseppe Corritore, Orazio Palumbo, Giuseppina Martino, Giuseppe Biscaglia, Daniela Scimeca, Massimo Carella, Nicola Ancona, Angelo Andriulli, Anna Latiano

Research output: Contribution to journalArticlepeer-review


Crohn’s disease (CD) is a debilitating inflammatory bowel disease (IBD) that emerges due to the influence of genetic and environmental factors. microRNAs (miRNAs) have been identified in the tissue and sera of IBD patients and may play an important role in the induction of IBD. Our study aimed to identify differentially expressed miRNAs and miRNAs with the ability to alter transcriptome activity by comparing inflamed tissue samples with their non-inflamed counterparts. We studied changes in miRNA–mRNA interactions associated with CD by examining their differential co-expression relative to normal mucosa from the same patients. Correlation changes between the two conditions were incorporated into scores of predefined gene sets to identify biological processes with altered miRNA-mediated control. Our study identified 28 miRNAs differentially expressed (p-values < 0.01), of which 14 are up-regulated. Notably, our differential coexpression analysis highlights microRNAs (i.e., miR-4284, miR-3194 and miR-21) that have known functional interactions with key mechanisms implicated in IBD. Most of these miRNAs cannot be detected by differential expression analysis that do not take into account miRNA–mRNA interactions. The identification of differential miRNA–mRNA co-expression patterns will facilitate the investigation of the miRNA-mediated molecular mechanisms underlying CD pathogenesis and could suggest novel drug targets for validation.

Original languageEnglish
Article number1580
JournalInternational Journal of Molecular Sciences
Issue number7
Publication statusPublished - Jul 20 2017


  • Crohn’s disease
  • Differential expression analysis
  • MicroRNA
  • MicroRNA– mRNA co-expression
  • mRNA

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Functional implications of microRNAs in crohn’s disease revealed by integrating microRNA and messenger RNA expression profiling'. Together they form a unique fingerprint.

Cite this