Gastrocnemius myoelectric control of a robotic hip exoskeleton

Lorenzo Grazi, Simona Crea, Andrea Parri, Tingfang Yan, Mario Cortese, Francesco Giovacchini, Marco Cempini, Guido Pasquini, Silvestro Micera, Nicola Vitiello

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we present a novel EMG-based assistive control strategy for lower-limb exoskeletons. An active pelvis orthosis (APO) generates torque profiles for the hip flexion motion assistance, according to the Gastrocnemius Medialis EMG signal. The strategy has been tested on one healthy subject: experimental results show that the user is able to reduce his muscular activation when the assistance is switched on with respect to the free walking condition.

Original languageEnglish
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3881-3884
Number of pages4
Volume2015-November
ISBN (Print)9781424492718
DOIs
Publication statusPublished - Nov 4 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period8/25/158/29/15

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Gastrocnemius myoelectric control of a robotic hip exoskeleton'. Together they form a unique fingerprint.

Cite this