TY - JOUR
T1 - Gaucher disease due to saposin C deficiency is an inherited lysosomal disease caused by rapidly degraded mutant proteins
AU - Motta, Marialetizia
AU - Camerini, Serena
AU - Tatti, Massimo
AU - Casella, Marialuisa
AU - Torreri, Paola
AU - Crescenzi, Marco
AU - Tartaglia, Marco
AU - Salvioli, Rosa
PY - 2014/11/1
Y1 - 2014/11/1
N2 - Saposin (Sap) C is an essential cofactor for the lysosomal degradation of glucosylceramide (GC) by glucosylceramidase (GCase) and its functional impairment underlies a rare variant form of Gaucher disease (GD). Sap C promotes rearrangement of lipid organization in lysosomal membranes favoring substrate accessibility to GCase. It is characterized by six invariantly conserved cysteine residues involved in three intramolecular disulfide bonds, which make the protein remarkably stable to acid environment and degradation. Five different mutations (i.e. p.C315S, p.342_348FDKMCSKdel, p.L349P, p.C382G and p.C382F) have been identified to underlie Sap C deficiency. The molecular mechanism by which these mutations affect Sap C function, however, has not been delineated in detail. Here, we characterized biochemically and functionally four of these gene lesions. We show that all Sap C mutants are efficiently produced, and exhibit lipid-binding properties, modulatory behavior on GCase activity and subcellular localization comparable with those of the wild-type protein. We then delineated the structural rearrangement of these mutants, documenting that most proteins assume diverse aberrant disulfide bridge arrangements, which result in a substantial diminished half-life, and rapid degradation via autophagy. These findings further document the paramount importance of disulfide bridges in the stability of Sap C and provide evidence that accelerated degradation of the Sap C mutants is the underlying pathogenetic mechanism of Sap C deficiency.
AB - Saposin (Sap) C is an essential cofactor for the lysosomal degradation of glucosylceramide (GC) by glucosylceramidase (GCase) and its functional impairment underlies a rare variant form of Gaucher disease (GD). Sap C promotes rearrangement of lipid organization in lysosomal membranes favoring substrate accessibility to GCase. It is characterized by six invariantly conserved cysteine residues involved in three intramolecular disulfide bonds, which make the protein remarkably stable to acid environment and degradation. Five different mutations (i.e. p.C315S, p.342_348FDKMCSKdel, p.L349P, p.C382G and p.C382F) have been identified to underlie Sap C deficiency. The molecular mechanism by which these mutations affect Sap C function, however, has not been delineated in detail. Here, we characterized biochemically and functionally four of these gene lesions. We show that all Sap C mutants are efficiently produced, and exhibit lipid-binding properties, modulatory behavior on GCase activity and subcellular localization comparable with those of the wild-type protein. We then delineated the structural rearrangement of these mutants, documenting that most proteins assume diverse aberrant disulfide bridge arrangements, which result in a substantial diminished half-life, and rapid degradation via autophagy. These findings further document the paramount importance of disulfide bridges in the stability of Sap C and provide evidence that accelerated degradation of the Sap C mutants is the underlying pathogenetic mechanism of Sap C deficiency.
UR - http://www.scopus.com/inward/record.url?scp=84930794853&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930794853&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddu299
DO - 10.1093/hmg/ddu299
M3 - Article
C2 - 24925315
VL - 23
SP - 5814
EP - 5826
JO - Human Molecular Genetics
JF - Human Molecular Genetics
SN - 0964-6906
IS - 21
ER -