Gelatin Porous Scaffolds as Delivery Systems of Calcium Alendronate

Silvia Panzavolta, Paola Torricelli, Sonia Casolari, Annapaola Parrilli, Sofia Amadori, Milena Fini, Adriana Bigi

Research output: Contribution to journalArticlepeer-review


The systemic administration of bisphosphonates (BPs) for the treatment of metabolic diseases characterized by abnormal bone loss suffers from several adverse side effects, which can be reduced by implementation of alternative modes of administration. In this work, glutaraldehyde cross-linked gelatin scaffolds are proposed as delivery systems of calcium alendronate monohydrate (CaAL•H2O). The 3D highly porous scaffolds display a relevant interconnected porosity (>94%), independently from CaAL•H2O content (0, 3, and 6 wt%). At variance, pore size varies with composition. The relative increase of the number of smaller pores on increasing BP content is in agreement with the parallel significant increase of the compressive modulus and collapse strength. The scaffolds exhibit a sustained CaAL•H2O release profile, and a significant amount of the drug is retained in the scaffolds even after 14 d. In vitro tests are carried out using cocultures of osteoblast (OB) and osteoclast (OC). The evaluation of differentiation markers is performed both on the supernatants of cell culture and by means of quantitative polymerase chain reaction. The results indicate that BP containing scaffolds support osteoblast proliferation and differentiation, whereas they inhibit osteoclast viability and activity, displaying a promising beneficial role on bone repair processes.

Original languageEnglish
JournalMacromolecular Bioscience
Publication statusAccepted/In press - 2016


  • Bisphosphonates
  • Drug delivery systems
  • Gelatin scaffolds
  • Mechanical properties

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Gelatin Porous Scaffolds as Delivery Systems of Calcium Alendronate'. Together they form a unique fingerprint.

Cite this