Abstract
Original language | English |
---|---|
Pages (from-to) | 371-380 |
Number of pages | 10 |
Journal | ESC Heart Fail. |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Cardiopulmonary exercise test
- Heart failure
- Prognosis
- Ventilation efficiency
- carbon dioxide
- adolescent
- adult
- aged
- air conditioning
- area under the curve
- Article
- cardiopulmonary exercise test
- cardiovascular mortality
- comorbidity
- controlled study
- exercise
- female
- follow up
- heart failure with reduced ejection fraction
- heart left ventricle ejection fraction
- heart transplantation
- human
- male
- metabolix exercise combined with cardiac and kidney index
- population research
- prediction
- predictive value
- priority journal
- prognosis
- scoring system
- ventilation efficiency
Fingerprint
Dive into the research topics of 'Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction: ESC Heart Failure'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction : ESC Heart Failure. / Meki score research group.
In: ESC Heart Fail., Vol. 7, No. 1, 2020, p. 371-380.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction
T2 - ESC Heart Failure
AU - Meki score research group
AU - Salvioni, E.
AU - Corrà, U.
AU - Piepoli, M.
AU - Rovai, S.
AU - Correale, M.
AU - Paolillo, S.
AU - Pasquali, M.
AU - Magrì, D.
AU - Vitale, G.
AU - Fusini, L.
AU - Mapelli, M.
AU - Vignati, C.
AU - Lagioia, R.
AU - Raimondo, R.
AU - Sinagra, G.
AU - Boggio, F.
AU - Cangiano, L.
AU - Gallo, G.
AU - Magini, A.
AU - Contini, M.
AU - Palermo, P.
AU - Apostolo, A.
AU - Pezzuto, B.
AU - Bonomi, A.
AU - Scardovi, A.B.
AU - Filardi, P.P.
AU - Limongelli, G.
AU - Metra, M.
AU - Scrutinio, D.
AU - Emdin, M.
AU - Piccioli, L.
AU - Lombardi, C.
AU - Cattadori, G.
AU - Parati, G.
AU - Caravita, S.
AU - Re, F.
AU - Cicoira, M.
AU - Frigerio, M.
AU - Clemenza, F.
AU - Bussotti, M.
AU - Battaia, E.
AU - Guazzi, M.
AU - Bandera, F.
AU - Badagliacca, R.
AU - Di Lenarda, A.
AU - Pacileo, G.
AU - Passino, C.
AU - Sciomer, S.
AU - Ambrosio, G.
AU - Agostoni, P.
N1 - Cited By :5 Export Date: 5 March 2021 Correspondence Address: Agostoni, P.; Centro Cardiologico Monzino, Via Parea 4, Italy; email: piergiuseppe.agostoni@unimi.it Chemicals/CAS: carbon dioxide, 124-38-9, 58561-67-4 Funding text 1: This research is supported by Italian Ministry of Health. A References: Roger, V.L., Epidemiology of heart failure (2013) Circ Res, 113, pp. 646-659; Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., Falk, V., van der Meer, P., 2016 esc guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (esc)developed with the special contribution of the heart failure association (hfa) of the esc (2016) Eur Heart J, 37, pp. 2129-2200; Piepoli, M.F., Corra, U., Agostoni, P.G., Belardinelli, R., Cohen-Solal, A., Hambrecht, R., Vanhees, L., Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: Recommendations for performance and interpretation. Part i: Definition of cardiopulmonary exercise testing parameters for appropriate use in chronic heart failure (2006) Eur J Cardiovasc Prev Rehabil, 13, pp. 150-164; Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Riegel, B., Acc/aha 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure): Developed in collaboration with the American college of chest physicians and the international society for heart and lung transplantation: Endorsed by the heart rhythm society (2005) Circulation, 112, p. e235; Mehra, M.R., Canter, C.E., Hannan, M.M., Semigran, M.J., Uber, P.A., Baran, D.A., Danziger-Isakov, L., Zuckermann, A., The 2016 international society for heart lung transplantation listing criteria for heart transplantation: a 10-year update (2016) J Heart Lung Transplant, 35, pp. 1-23; Francis, D.P., Shamim, W., Davies, L.C., Piepoli, M.F., Ponikowski, P., Anker, S.D., Coats, A.J., Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO2 slope and peak Vo2 (2000) Eur Heart J, 21, pp. 154-161; Arena, R., Myers, J., Guazzi, M., The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review (2008) Heart Fail Rev, 13, pp. 245-269; Weber, K.T., Janicki, J.S., Cardiopulmonary exercise testing for evaluation of chronic cardiac failure (1985) Am J Cardiol, 55, pp. 22A-31A; Arena, R., Myers, J., Aslam, S.S., Varughese, E.B., Peberdy, M.A., Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison (2004) Am Heart J, 147, pp. 354-360; Agostoni, P., Corra, U., Cattadori, G., Veglia, F., La Gioia, R., Scardovi, A.B., Emdin, M., Passino, C., Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: a multiparametric approach to heart failure prognosis (2013) Int J Cardiol, 167, pp. 2710-2718; Reindl, I., Wernecke, K.D., Opitz, C., Wensel, R., Konig, D., Dengler, T., Schimke, I., Kleber, F.X., Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction (1998) Am Heart J, 136, pp. 778-785; Gargiulo, P., Olla, S., Boiti, C., Contini, M., Perrone-Filardi, P., Agostoni, P., Predicted values of exercise capacity in heart failure: where we are, where to go (2014) Heart Fail Rev, 19, pp. 645-653; Wasserman, K., Hansen, J.E., Sue, D.Y., Stringer, W.W., Whipp, B.J., (2005) Clinical exercise testing. Principles of exercise testing and interpretation including pathophysiology and clinical applications, pp. 138-139. , Lippincott Williams & Wilkins, p; Hansen, J.E., Sue, D.Y., Wasserman, K., Predicted values for clinical exercise testing (1984) Am Rev Respir Dis, 129, pp. S49-S55; Jones, N.L., Makrides, L., Hitchcock, C., Chypchar, T., McCartney, N., Normal standards for an incremental progressive cycle ergometer test (1985) Am Rev Respir Dis, 131, pp. 700-708; Wagner, J., Agostoni, P., Arena, R., Belardinelli, R., Dumitrescu, D., Hager, A., Myers, J., Schmidt-Trucksass, A., The role of gas exchange variables in cardiopulmonary exercise testing for risk stratification and management of heart failure with reduced ejection fraction (2018) Am Heart J, 202, pp. 116-126; Guazzi, M., Adams, V., Conraads, V., Halle, M., Mezzani, A., Vanhees, L., Arena, R., Myers, J., Eacpr/aha scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations (2012) Circulation, 126, pp. 2261-2274; Koch, B., Schaper, C., Ittermann, T., Spielhagen, T., Dorr, M., Volzke, H., Opitz, C.F., Glaser, S., Reference values for cardiopulmonary exercise testing in healthy volunteers: the ship study (2009) Eur Respir J, 33, pp. 389-397; Sun, X.G., Hansen, J.E., Garatachea, N., Storer, T.W., Wasserman, K., Ventilatory efficiency during exercise in healthy subjects (2002) Am J Respir Crit Care Med, 166, pp. 1443-1448; Neder, J.A., Nery, L.E., Peres, C., Whipp, B.J., Reference values for dynamic responses to incremental cycle ergometry in males and females aged 20 to 80 (2001) Am J Respir Crit Care Med, 164, pp. 1481-1486; Kleber, F.X., Vietzke, G., Wernecke, K.D., Bauer, U., Opitz, C., Wensel, R., Sperfeld, A., Glaser, S., Impairment of ventilatory efficiency in heart failure: prognostic impact (2000) Circulation, 101, pp. 2803-2809; Agostoni, P., Paolillo, S., Mapelli, M., Gentile, P., Salvioni, E., Veglia, F., Bonomi, A., Filardi, P.P., Multiparametric prognostic scores in chronic heart failure with reduced ejection fraction: a long-term comparison (2018) Eur J Heart Fail, 20, pp. 700-710; Agostoni, P., Dumitrescu, D., How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure (2019) Int J Cardiol, 288, pp. 107-113; Agostoni, P., Bianchi, M., Moraschi, A., Palermo, P., Cattadori, G., La Gioia, R., Bussotti, M., Wasserman, K., Work-rate affects cardiopulmonary exercise test results in heart failure (2005) Eur J Heart Fail, 7, pp. 498-504; Poulin, M.J., Cunningham, D.A., Paterson, D.H., Rechnitzer, P.A., Ecclestone, N.A., Koval, J.J., Ventilatory response to exercise in men and women 55 to 86 years of age (1994) Am J Respir Crit Care Med, 149, pp. 408-415; Sinagra, G., Iorio, A., Merlo, M., Cannata, A., Stolfo, D., Zambon, E., Di Nora, C., Agostoni, P., Prognostic value of cardiopulmonary exercise testing in idiopathic dilated cardiomyopathy (2016) Int J Cardiol, 223, pp. 596-603; Magri, D., Limongelli, G., Re, F., Agostoni, P., Zachara, E., Correale, M., Mastromarino, V., Autore, C., Cardiopulmonary exercise test and sudden cardiac death risk in hypertrophic cardiomyopathy (2016) Heart, 102, pp. 602-609; Kato, Y., Suzuki, S., Uejima, T., Semba, H., Nagayama, O., Hayama, E., Arita, T., Yamashita, T., Relationship between the prognostic value of ventilatory efficiency and age in patients with heart failure (2018) Eur J Prev Cardiol, 25, pp. 731-739; Magri, D., Re, F., Limongelli, G., Agostoni, P., Zachara, E., Correale, M., Mastromarino, V., Autore, C., Heart failure progression in hypertrophic cardiomyopathy—possible insights from cardiopulmonary exercise testing (2016) Circ J, 80, pp. 2204-2211; Aaronson, K.D., Schwartz, J.S., Chen, T.M., Wong, K.L., Goin, J.E., Mancini, D.M., Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation (1997) Circulation, 95, pp. 2660-2667; Corra, U., Agostoni, P., Giordano, A., Cattadori, G., Battaia, E., La Gioia, R., Scardovi, A.B., Piepoli, M.F., Sex profile and risk assessment with cardiopulmonary exercise testing in heart failure: propensity score matching for sex selection bias (2016) Can J Cardiol, 32, pp. 754-759; Hsich, E., Chadalavada, S., Krishnaswamy, G., Starling, R.C., Pothier, C.E., Blackstone, E.H., Lauer, M.S., Long-term prognostic value of peak oxygen consumption in women versus men with heart failure and severely impaired left ventricular systolic function (2007) Am J Cardiol, 100, pp. 291-295; Guazzi, M., Arena, R., Myers, J., Comparison of the prognostic value of cardiopulmonary exercise testing between male and female patients with heart failure (2006) Int J Cardiol, 113, pp. 395-400; Shafiq, A., Brawner, C.A., Aldred, H.A., Lewis, B., Williams, C.T., Tita, C., Schairer, J.R., Keteyian, S.J., Prognostic value of cardiopulmonary exercise testing in heart failure with preserved ejection fraction. The henry ford hospital cardiopulmonary exercise testing (fit-cpx) project (2016) Am Heart J, 174, pp. 167-172; Shah, S.J., Kitzman, D.W., Borlaug, B.A., van Heerebeek, L., Zile, M.R., Kass, D.A., Paulus, W.J., Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap (2016) Circulation, 134, pp. 73-90; Van Iterson, E.H., Johnson, B.D., Borlaug, B.A., Olson, T.P., Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure (2017) Eur J Heart Fail, 19, pp. 1675-1685
PY - 2020
Y1 - 2020
N2 - Aims: Ventilation vs. carbon dioxide production (VE/VCO2) is among the strongest cardiopulmonary exercise testing prognostic parameters in heart failure (HF). It is usually reported as an absolute value. The current definition of normal VE/VCO2 slope values is inadequate, since it was built from small groups of subjects with a particularly limited number of women and elderly. We aimed to define VE/VCO2 slope prediction formulas in a sizable population and to test whether the prognostic power of VE/VCO2 slope in HF was different if expressed as a percentage of the predicted value or as an absolute value. Methods and results: We calculated the linear regressions between age and VE/VCO2 slope in 1136 healthy subjects (68% male, age 44.9 ± 14.5, range 13–83 years). We then applied age-adjusted and sex-adjusted formulas to predict VE/VCO2 slope to HF patients included in the metabolic exercise test data combined with cardiac and kidney indexes score database, which counts 6112 patients (82% male, age 61.4 ± 12.8, left ventricular ejection fraction 33.2 ± 10.5%, peakVO2 14.8 ± 4.9, mL/min/kg, VE/VCO2 slope 32.7 ± 7.7) from 24 HF centres. Finally, we evaluated whether the use of absolute values vs. percentages of predicted VE/VCO2 affected HF prognosis prediction (composite of cardiovascular mortality + urgent transplant or left ventricular assist device). We did so in the entire cardiac and kidney indexes score population and separately in HF patients with severe (peakVO2 < 14 mL/min/kg, n = 2919, 61.1 events/1000 pts/year) or moderate (peakVO2 ≥ 14 mL/min/kg, n = 3183, 19.9 events/1000 pts/year) HF. In the healthy population, we obtained the following equations: female, VE/VCO2 = 0.052 × Age + 23.808 (r = 0.192); male, VE/VCO2 = 0.095 × Age + 20.227 (r = 0.371) (P = 0.007). We applied these formulas to calculate the percentages of predicted VE/VCO2 values. The 2-year survival prognostic power of VE/VCO2 slope was strong, and it was similar if expressed as absolute value or as a percentage of predicted value (AUCs 0.686 and 0.690, respectively). In contrast, in severe HF patients, AUCs significantly differed between absolute values (0.637) and percentages of predicted values (0.650, P = 0.0026). Moreover, VE/VCO2 slope expressed as a percentage of predicted value allowed to reclassify 6.6% of peakVO2 < 14 mL/min/kg patients (net reclassification improvement = 0.066, P = 0.0015). Conclusions: The percentage of predicted VE/VCO2 slope value strengthens the prognostic power of VE/VCO2 in severe HF patients, and it should be preferred over the absolute value for HF prognostication. Furthermore, the widespread use of VE/VCO2 slope expressed as percentage of predicted value can improve our ability to identify HF patients at high risk, which is a goal of utmost clinical relevance. © 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology
AB - Aims: Ventilation vs. carbon dioxide production (VE/VCO2) is among the strongest cardiopulmonary exercise testing prognostic parameters in heart failure (HF). It is usually reported as an absolute value. The current definition of normal VE/VCO2 slope values is inadequate, since it was built from small groups of subjects with a particularly limited number of women and elderly. We aimed to define VE/VCO2 slope prediction formulas in a sizable population and to test whether the prognostic power of VE/VCO2 slope in HF was different if expressed as a percentage of the predicted value or as an absolute value. Methods and results: We calculated the linear regressions between age and VE/VCO2 slope in 1136 healthy subjects (68% male, age 44.9 ± 14.5, range 13–83 years). We then applied age-adjusted and sex-adjusted formulas to predict VE/VCO2 slope to HF patients included in the metabolic exercise test data combined with cardiac and kidney indexes score database, which counts 6112 patients (82% male, age 61.4 ± 12.8, left ventricular ejection fraction 33.2 ± 10.5%, peakVO2 14.8 ± 4.9, mL/min/kg, VE/VCO2 slope 32.7 ± 7.7) from 24 HF centres. Finally, we evaluated whether the use of absolute values vs. percentages of predicted VE/VCO2 affected HF prognosis prediction (composite of cardiovascular mortality + urgent transplant or left ventricular assist device). We did so in the entire cardiac and kidney indexes score population and separately in HF patients with severe (peakVO2 < 14 mL/min/kg, n = 2919, 61.1 events/1000 pts/year) or moderate (peakVO2 ≥ 14 mL/min/kg, n = 3183, 19.9 events/1000 pts/year) HF. In the healthy population, we obtained the following equations: female, VE/VCO2 = 0.052 × Age + 23.808 (r = 0.192); male, VE/VCO2 = 0.095 × Age + 20.227 (r = 0.371) (P = 0.007). We applied these formulas to calculate the percentages of predicted VE/VCO2 values. The 2-year survival prognostic power of VE/VCO2 slope was strong, and it was similar if expressed as absolute value or as a percentage of predicted value (AUCs 0.686 and 0.690, respectively). In contrast, in severe HF patients, AUCs significantly differed between absolute values (0.637) and percentages of predicted values (0.650, P = 0.0026). Moreover, VE/VCO2 slope expressed as a percentage of predicted value allowed to reclassify 6.6% of peakVO2 < 14 mL/min/kg patients (net reclassification improvement = 0.066, P = 0.0015). Conclusions: The percentage of predicted VE/VCO2 slope value strengthens the prognostic power of VE/VCO2 in severe HF patients, and it should be preferred over the absolute value for HF prognostication. Furthermore, the widespread use of VE/VCO2 slope expressed as percentage of predicted value can improve our ability to identify HF patients at high risk, which is a goal of utmost clinical relevance. © 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology
KW - Cardiopulmonary exercise test
KW - Heart failure
KW - Prognosis
KW - Ventilation efficiency
KW - carbon dioxide
KW - adolescent
KW - adult
KW - aged
KW - air conditioning
KW - area under the curve
KW - Article
KW - cardiopulmonary exercise test
KW - cardiovascular mortality
KW - comorbidity
KW - controlled study
KW - exercise
KW - female
KW - follow up
KW - heart failure with reduced ejection fraction
KW - heart left ventricle ejection fraction
KW - heart transplantation
KW - human
KW - male
KW - metabolix exercise combined with cardiac and kidney index
KW - population research
KW - prediction
KW - predictive value
KW - priority journal
KW - prognosis
KW - scoring system
KW - ventilation efficiency
U2 - 10.1002/ehf2.12582
DO - 10.1002/ehf2.12582
M3 - Article
VL - 7
SP - 371
EP - 380
JO - ESC Heart Fail.
JF - ESC Heart Fail.
SN - 2055-5822
IS - 1
ER -