General anesthesia reduces the information exchange between heart and circulation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The study demonstrates the ability of an information-theoretic measure, such as the transfer entropy (TE), in detecting the depression of the cardiac baroreflex control and circulatory-cardio mechanical feedforward link during propofol-induced general anesthesia. TE was computed from spontaneous variability of heart period (HP) and systolic arterial pressure (SAP) in patients undergoing coronary artery bypass graft (CABG). TE from SAP to HP and from HP to SAP were evaluated by accounting for the confounding effect of respiration (R) affecting both HP and SAP (i.e. TESAP→HP-R and TEHP→SAP-R respectively). Both TESAP→HP-R and TEHP→SAP-R decreased during general anesthesia, thus suggesting that the strength of the causal relation diminished over both arms of the closed loop HP-SAP control. The squared coherence function between HP and SAP confirmed the decreased HP-SAP coupling during general anesthesia, even though it could not distinguish directionality.

Original languageEnglish
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4029-4032
Number of pages4
Volume2015-November
ISBN (Print)9781424492718
DOIs
Publication statusPublished - Nov 4 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
CountryItaly
CityMilan
Period8/25/158/29/15

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint Dive into the research topics of 'General anesthesia reduces the information exchange between heart and circulation'. Together they form a unique fingerprint.

Cite this