TY - JOUR
T1 - Generation of biologically active angiostatin kringle 1-3 by activated human neutrophils
AU - Scapini, Patrizia
AU - Nesi, Lorella
AU - Morini, Monica
AU - Tanghetti, Elena
AU - Belleri, Mirella
AU - Noonan, Douglas
AU - Presta, Marco
AU - Albini, Adriana
AU - Cassatella, Marco A.
PY - 2002/6/1
Y1 - 2002/6/1
N2 - The contribution of polymorphonuclear neutrophils (PMN) to host defense and natural immunity extends well beyond their traditional role as professional phagocytes. In this study, we demonstrate that upon stimulation with proinflammatory stimuli, human PMN release enzymatic activities that, in vitro, generate bioactive angiostatin fragments from purified plasminogen. We also provide evidence that these angiostatin-like fragments, comprising kringle domain 1 to kringle domain 3 (kringle 1-3) of plasminogen, are generated as a byproduct of the selective proteolytic activity of neutrophil-secreted elastase. Remarkably, affinity-purified angiostatin kringle 1-3 fragments generated by neutrophils inhibited basic fibroblast growth factor plus vascular endothelial growth factor-induced endothelial cell proliferation in vitro, and both vascular endothelial growth factor-induced angiogenesis in the matrigel plug assay and fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane assay, in vivo. These results represent the first demonstration that biologically active angiostatin-like fragments can be generated by inflammatory human neutrophils. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and metastasis, the data suggest that activated PMN not only act as potent effectors of inflammation, but might also play a critical role in the inhibition of angiogenesis in inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule.
AB - The contribution of polymorphonuclear neutrophils (PMN) to host defense and natural immunity extends well beyond their traditional role as professional phagocytes. In this study, we demonstrate that upon stimulation with proinflammatory stimuli, human PMN release enzymatic activities that, in vitro, generate bioactive angiostatin fragments from purified plasminogen. We also provide evidence that these angiostatin-like fragments, comprising kringle domain 1 to kringle domain 3 (kringle 1-3) of plasminogen, are generated as a byproduct of the selective proteolytic activity of neutrophil-secreted elastase. Remarkably, affinity-purified angiostatin kringle 1-3 fragments generated by neutrophils inhibited basic fibroblast growth factor plus vascular endothelial growth factor-induced endothelial cell proliferation in vitro, and both vascular endothelial growth factor-induced angiogenesis in the matrigel plug assay and fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane assay, in vivo. These results represent the first demonstration that biologically active angiostatin-like fragments can be generated by inflammatory human neutrophils. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and metastasis, the data suggest that activated PMN not only act as potent effectors of inflammation, but might also play a critical role in the inhibition of angiogenesis in inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule.
UR - http://www.scopus.com/inward/record.url?scp=0036604429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036604429&partnerID=8YFLogxK
M3 - Article
C2 - 12023382
AN - SCOPUS:0036604429
VL - 168
SP - 5798
EP - 5804
JO - Journal of Immunology
JF - Journal of Immunology
SN - 0022-1767
IS - 11
ER -