Genetic control of adult neurogenesis: Interplay of differentiation, proliferation and survival modulates new neurons function and memory circuits

Stefano Farioli-Vecchioli, Laura Micheli, Manuela Ceccarelli, Luca Leonardi, Felice Tirone

Research output: Contribution to journalArticle


Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2-1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. A model attempting to measure and correlate the extent of the total alterations in the process of neurogenesis with the impairment of memory is provided.

Original languageEnglish
JournalFrontiers in Cellular Neuroscience
Issue numberAPR
Publication statusPublished - Apr 15 2013



  • Adult neurogenesis
  • Apoptosis
  • Btg1
  • Btg2
  • Dentate gyrus
  • Differentiation
  • Hippocampus
  • Learning and memory
  • PC3
  • Progenitor cells
  • Proliferation
  • Tis21

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience

Cite this