TY - JOUR
T1 - Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia
AU - Bossi, Simone
AU - Musante, Ilaria
AU - Bonfiglio, Tommaso
AU - Bonifacino, Tiziana
AU - Emionite, Laura
AU - Cerminara, Maria
AU - Cervetto, Chiara
AU - Marcoli, Manuela
AU - Bonanno, Giambattista
AU - Ravazzolo, Roberto
AU - Pittaluga, Anna
AU - Puliti, Aldamaria
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1crv4/crv4) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1crv4 and Grm5ko mice to generate double mutants (Grm1crv4/crv4Grm5ko/ko) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12 mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia.
AB - Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1crv4/crv4) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1crv4 and Grm5ko mice to generate double mutants (Grm1crv4/crv4Grm5ko/ko) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12 mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia.
KW - AMPA receptors
KW - Ataxia
KW - Double mutant mice
KW - Evoked glutamate release
KW - Grm1 mouse
KW - mGlu1 receptor
KW - mGlu5 receptor
KW - Mouse behavior analysis
KW - Phenotype rescue
UR - http://www.scopus.com/inward/record.url?scp=85031013349&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85031013349&partnerID=8YFLogxK
U2 - 10.1016/j.nbd.2017.10.001
DO - 10.1016/j.nbd.2017.10.001
M3 - Article
AN - SCOPUS:85031013349
VL - 109
SP - 44
EP - 53
JO - Neurobiology of Disease
JF - Neurobiology of Disease
SN - 0969-9961
ER -