Genetic variants in CCNB1 associated with differential gene transcription and risk of coronary in-stent restenosis

Carlos Silvestre-Roig, Patricia Fernández, María L. Mansego, Claudia M. Van Tiel, Rosa Viana, Chiara Viviani Anselmi, Gianluigi Condorelli, Robbert J. De Winter, Paula Martín-Fuentes, María Solanas-Barca, Fernando Civeira, Amelia Focaccio, Carlie J M De Vries, Felipe Javier Chaves, Vicente Andrés

Research output: Contribution to journalArticlepeer-review


Background: The development of diagnostic tools to assess restenosis risk after stent deployment may enable the intervention to be tailored to the individual patient, for example, by targeting the use of drug-eluting stent to highrisk patients, with the goal of improving safety and reducing costs. The CCNB1 gene (encoding cyclin B1) positively regulates cell proliferation, a key component of in-stent restenosis. Therefore, we hypothesized that single-nucleotide polymorphisms in CCNB1 may serve as useful tools in risk stratification for in-stent restenosis. Methods and Results: We identified 3 single-nucleotide polymorphisms in CCNB1 associated with increased restenosis risk in a cohort of 284 patients undergoing coronary angioplasty and stent placement (rs350099: TT versus CC+TC; odds ratio [OR], 1.82; 95% confidence interval [CI], 1.09-3.03; P=0.023; rs350104: CC versus CT+TT; OR, 1.82; 95% CI, 1.02-3.26; P=0.040; and rs164390: GG versus GT+TT; OR, 2.27; 95% CI, 1.33-3.85; P=0.002). These findings were replicated in another cohort study of 715 patients (rs350099: TT versus CC+TC; OR, 1.88; 95% CI, 0.92-3.81; P=0.080; rs350104: CC versus CT+TT; OR, 2.23; 95% CI, 1.18-4.25; P=0.016; and rs164390: GG versus GT+TT; OR, 1.87; 95% CI, 1.03-3.47; P=0.040). Moreover, the haplotype containing all 3 risk alleles is associated with higher CCNB1 mRNA expression in circulating lymphocytes and increased in-stent restenosis risk (OR, 1.43; 95% CI, 1.00-1.823; P=0.039). The risk variants of rs350099, rs350104, and rs164390 are associated with increased reporter gene expression through binding of transcription factors nuclear factor-Y, activator protein 1, and specificity protein 1, respectively. Conclusions: Allele-dependent transcriptional regulation of CCNB1 associated with rs350099, rs350104, and rs164390 affects the risk of in-stent restenosis. These findings reveal these common genetic variations as attractive diagnostic tools in risk stratification for restenosis.

Original languageEnglish
Pages (from-to)59-70
Number of pages12
JournalCirculation: Cardiovascular Genetics
Issue number1
Publication statusPublished - 2014


  • AP-1 transcription factor
  • In-stent restenosis
  • NF-Y transcription factor
  • Polymorphism genetics
  • SP1 transcription factor
  • Stents

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Genetics(clinical)
  • Genetics


Dive into the research topics of 'Genetic variants in CCNB1 associated with differential gene transcription and risk of coronary in-stent restenosis'. Together they form a unique fingerprint.

Cite this