Abstract
Original language | English |
---|---|
Article number | 506 |
Journal | Front. Neurosci. |
Volume | 13 |
Issue number | MAY |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Frontotemporal dementia
- Genetic common variants
- Genetic mutations
- Genetic rare variants
- Genome wide association study
- Next generation sequencing
- TAR DNA binding protein
- Article
- frontotemporal dementia
- gene
- gene locus
- gene mutation
- gene rearrangement
- genetic association
- genetic variability
- GRN gene
- human
- immune response
- MAPT gene
- next generation sequencing
- phenotype
- sequence homology
- signal transduction
- ubiquitination
- whole genome sequencing
Fingerprint
Dive into the research topics of 'Genome wide association study and next generation sequencing: A glimmer of light toward new possible horizons in frontotemporal dementia research: Frontiers in Neuroscience'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Genome wide association study and next generation sequencing: A glimmer of light toward new possible horizons in frontotemporal dementia research : Frontiers in Neuroscience. / Ciani, M.; Benussi, L.; Bonvicini, C.; Ghidoni, R.
In: Front. Neurosci., Vol. 13, No. MAY, 506, 2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Genome wide association study and next generation sequencing: A glimmer of light toward new possible horizons in frontotemporal dementia research
T2 - Frontiers in Neuroscience
AU - Ciani, M.
AU - Benussi, L.
AU - Bonvicini, C.
AU - Ghidoni, R.
N1 - Cited By :1 Export Date: 10 February 2020 Correspondence Address: Benussi, L.; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliItaly; email: lbenussi@fatebenefratelli.eu Funding details: JPND2013 Funding text 1: This work was supported by the Italian Ministry of Health (Ricerca Corrente) and the EU Joint Programme – Neurodegenerative Disease Research (JPND2013 www.jpnd.eu) – Funding organization Italy, Italian Ministry of Health. References: Abrahao, A., Abath, N.O., Kok, F., Zanoteli, E., Santos, B., Pinto, W.B., One family, one gene and three phenotypes: A novel VCP (valosin-containing protein) mutation associated with myopathy with rimmed vacuoles, amyotrophic lateral sclerosis and frontotemporal dementia (2016) J. Neurol. Sci., 368, pp. 352-358; Aikawa, T., Holm, M.L., Kanekiyo, T., ABCA7 and pathogenic pathways of Alzheimer's disease (2018) Brain Sci, 8, p. E27; Anfossi, M., Vuono, R., Maletta, R., Virdee, K., Mirabelli, M., Colao, R., Compound heterozygosity of 2 novel MAPT mutations in frontotemporal dementia (2011) Neurobiol. Aging, 32, pp. 757e1-757e11; Armstrong, M.J., Litvan, I., Lang, A.E., Bak, T.H., Bhatia, K.P., Borroni, B., Criteria for the diagnosis of corticobasal degeneration (2013) Neurology, 80, pp. 496-503; Baker, M., Mackenzie, I.R., Pickering-Brown, S.M., Gass, J., Rademakers, R., Lindholm, C., Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 (2006) Nature, 442, pp. 916-919; Bonvicini, C., Scassellati, C., Benussi, L., Di Maria, E., Maj, C., Ciani, M., Next generation sequencing analysis in early onset dementia patients (2019) J. Alzheimers Dis., 67, pp. 243-256; Boyle, E.A., Li, Y.I., Pritchard, J.K., An expanded view of complex traits: From polygenic to omnigenic (2017) Cell, 169, pp. 1177-1186; Breza, M., Koutsis, G., Karadima, G., Potagas, C., Kartanou, C., Papageorgiou, S.G., The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia (2018) Neurosci. Lett., 672, pp. 136-139; Broce, I., Karch, C.M., Wen, N., Fan, C.C., Wang, Y., Tan, C.H., Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies (2018) PLoS. Med., 15; Busch, J.I., Unger, T.L., Jain, N., Tyler, S.R., Charan, R.A., Chen-Plotkin, A.S., Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes (2016) Hum. Mol. Genet., 25, pp. 2681-2697; Chen, J.A., Wang, Q., Davis-Turak, J., Li, Y., Karydas, A.M., Hsu, S.C., A multiancestral genome-wide exome array study of Alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy (2015) JAMA Neurol, 72, pp. 414-422; Coyle-Gilchrist, I.T., Dick, K.M., Patterson, K., Vázquez Rodríquez, P., Wehmann, E., Wilcox, A., Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes (2016) Neurology, 86, pp. 1736-1743; Cruts, M., Gijselinck, I., Van Der Zee, J., Engelborghs, S., Wils, H., Pirici, D., Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 (2006) Nature, 442, pp. 920-924; DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS (2011) Neuron, 72, pp. 245-256; Dong, C., Lin, Z., Diao, W., Li, D., Chu, X., Wang, Z., The Elp2 subunit is essential for elongator complex assembly and functional regulation (2015) Structure, 23, pp. 1078-1086; Ferrari, R., Grassi, M., Salvi, E., Borroni, B., Palluzzi, F., Pepe, D., A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia (2015) Neurobiol. Aging, 36, p. 2904; Ferrari, R., Hernandez, D.G., Nalls, M.A., Rohrer, J.D., Ramasamy, A., Kwok, J.B., Frontotemporal dementia and its subtypes: A genome-wide association study (2014) Lancet Neurol, 13, pp. 686-699; Ferrari, R., Wang, Y., Vandrovcova, J., Guelfi, S., Witeolar, A., Karch, C.M., Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases (2017) J. Neurol. Neurosurg. Psychiatry, 88, pp. 152-164; Finch, N., Baker, M., Crook, R., Swanson, K., Kuntz, K., Surtees, R., Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members (2009) Brain, 132, pp. 583-591; Finch, N., Carrasquillo, M.M., Baker, M., Rutherford, N.J., Coppola, G., Dejesus-Hernandez, M., TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers (2011) Neurology, 76, pp. 467-474; Fostinelli, S., Ciani, M., Zanardini, R., Zanetti, O., Binetti, G., Ghidoni, R., The heritability of frontotemporal lobar degeneration: Validation of pedigree classification criteria in a Northern Italy cohort (2018) J. Alzheimers Dis., 61, pp. 753-760; Gallagher, M.D., Posavi, M., Huang, P., Unger, T.L., Berlyand, Y., Gruenewald, A.L., A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression (2017) Am. J. Hum. Genet., 101, pp. 643-663; Ghidoni, R., Benussi, L., Glionna, M., Franzoni, M., Binetti, G., Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration (2008) Neurology, 71, pp. 1235-1239; Ghidoni, R., Stoppani, E., Rossi, G., Piccoli, E., Albertini, V., Paterlini, A., Optimal plasma progranulin cutoff value forpredicting null progranulin mutations in neurodegenerative diseases: A multicenter Italian study (2012) Neurodegener. Dis., 9, pp. 121-127; Giannoccaro, M.P., Bartoletti-Stella, A., Piras, S., Pession, A., De Massis, P., Oppi, F., Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: Further observations on their oligogenic nature (2017) J. Neurol., 264, pp. 1426-1433; Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Classification of primary progressive aphasia and its variants (2011) Neurology, 76, pp. 1006-1014; Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 (1998) Nature, 393, pp. 702-705; Karch, C.M., Wen, N., Fan, C.C., Yokoyama, J.S., Kouri, N., Ross, O.A., Selective genetic overlap between amyotrophic lateral sclerosis and diseases of the frontotemporal dementia spectrum (2018) JAMA Neurol, 75, pp. 860-875; Kim, E.J., Kim, Y.E., Jang, J.H., Cho, E.H., Na, D.L., Seo, S.W., Analysis of frontotemporal dementia, amyotrophic lateral sclerosis, and other dementia-related genes in 107 Korean patients with frontotemporal dementia (2018) Neurobiol. Aging, 72, p. 186; Klein, Z.A., Takahashi, H., Ma, M., Stagi, M., Zhou, M., Lam, T.T., Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice (2017) Neuron, 95, pp. 281-296; Knopman, D.S., Petersen, R.C., Edland, S.D., Cha, R.H., Rocca, W.A., The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994 (2004) Neurology, 62, pp. 506-508; Lee, A., Rayner, S.L., Gwee, S.S.L., De Luca, A., Shahheydari, H., Sundaramoorthy, V., Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy (2018) Cell. Mol. Life Sci., 75, pp. 335-354; Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP international workshop (1996) Neurology, 47, pp. 1-9; Loy, C.T., Schofield, P.R., Turner, A.M., Kwok, J.B., Genetics of dementia (2014) Lancet, 383, pp. 828-840; Meyer, H., Weihl, C.C., The VCP/p97 system at a glance: Connecting cellular function to disease pathogenesis (2014) J. Cell. Sci., 127, pp. 3877-3883; Mishra, A., Ferrari, R., Heutink, P., Hardy, J., Pijnenburg, Y., Posthuma, D., Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia (2017) Brain, 140, pp. 1437-1446; Mullin, S., Schapira, A., Α-synuclein and mitochondrial dysfunction in Parkinson's disease (2013) Mol. Neurobiol., 47, pp. 587-597; Muñoz, I.M., Rouse, J., Control of histone methylation and genome stability by PTIP (2009) EMBO Rep, 10, pp. 239-245; Ng, A.S.L., Tan, Y.J., Yi, Z., Tandiono, M., Chew, E., Dominguez, J., Targeted exome sequencing reveals homozygous TREM2 R47C mutation presenting with behavioral variant frontotemporal dementia without bone involvement (2018) Neurobiol. Aging, 68, p. 160; Nicholson, A.M., Rademakers, R., What we know about TMEM106B in neurodegeneration (2016) Acta Neuropathol, 132, pp. 639-651; Ott, J., Wang, J., Leal, S.M., Genetic linkage analysis in the age of whole-genome sequencing (2015) Nat. Rev. Genet., 16, pp. 275-284; Pan, C., Jiao, B., Xiao, T., Hou, L., Zhang, W., Liu, X., Mutations of CCNF gene is rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia from Mainland China (2017) Amyotroph. Lateral. Scler. Frontotemporal Degener., 18, pp. 265-268; Patel, T., Brookes, K.J., Turton, J., Chaudhury, S., Guetta-Baranes, T., Guerreiro, R., Whole-exome sequencing of the BDR cohort: Evidence to support the role of the PILRA gene in Alzheimer's disease (2017) Neuropathol. Appl. Neurobiol., 44, pp. 506-521; Philtjens, S., Van Mossevelde, S., Van Der Zee, J., Wauters, E., Dillen, L., Vandenbulcke, M., Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia (2018) Neurobiol. Aging, 66, p. 181; Poorkaj, P., Bird, T.D., Wijsman, E., Nemens, E., Garruto, R.M., Anderson, L., Tau is a candidate gene for chromosome 17 frontotemporal dementia (1998) Ann. Neurol., 43, pp. 815-825; Pottier, C., Bieniek, K.F., Finch, N., Van De Vorst, M., Baker, M., Perkersen, R., Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease (2015) Acta Neuropathol, 30, pp. 77-92; Pottier, C., Zhou, X., Perkerson, R.B., Baker, M., Jenkins, G.D., Serie, D.J., Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: A genome-wide association study (2018) Lancet Neurol, 17, pp. 548-558; Rainero, I., Rubino, E., Michelerio, A., D'Agata, F., Gentile, S., Pinessi, L., Recent advances in the molecular genetics of frontotemporal lobar degeneration (2017) Funct. Neurol., 32, pp. 7-16; Ramanan, V.K., Saykin, A.J., Pathways to neurodegeneration: Mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders (2013) Am. J. Neurodegener. Dis., 2, pp. 145-175; Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia (2011) Brain, 134, pp. 2456-2477; Ratnavalli, E., Brayne, C., Dawson, K., Hodges, J.R., The prevalence of frontotemporal dementia (2002) Neurology, 58, pp. 1615-1621; Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J.R., A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD (2011) Neuron, 72, pp. 257-268; Rhinn, H., Abeliovich, A., Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes (2017) Cell. Syst., 4, pp. 404-415; Rohrer, J.D., Guerreiro, R., Vandrovcova, J., Uphill, J., Reiman, D., Beck, J., The heritability and genetics of frontotemporal lobar degeneration (2009) Neurology, 73, pp. 1451-1456; Roses, A., Sundseth, S., Saunders, A., Gottschalk, W., Burns, D., Lutz, M., Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer's disease (2016) Alzheimers Dem, 12, pp. 687-694; Saracino, D., Clot, F., Camuzat, A., Anquetil, V., Hannequin, D., Guyant-Maréchal, L., Novel VCP mutations expand the mutational spectrum of frontotemporal dementia (2018) Neurobiol. Aging, 72, p. 187; Sleegers, K., Brouwers, N., Van Damme, P., Engelborghs, S., Gijselinck, I., Van Der Zee, J., Serum biomarker for progranulin-associated frontotemporal lobar degeneration (2009) Ann. Neurol., 65, pp. 603-609; Taskesen, E., Mishra, A., Van Der Sluis, S., Ferrari, R., Veldink, J.H., Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with amyotrophic lateral sclerosis by DNA-methylation and GWAS (2018) Sci. Rep., 8, p. 7789; Van Blitterswijk, M., Mullen, B., Nicholson, A.M., Bieniek, K.F., Heckman, M.G., Baker, M.C., TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia (2014) Acta Neuropathol, 127, pp. 397-406; Van Deerlin, V.M., Sleiman, P.M., Martinez-Lage, M., Chen-Plotkin, A., Wang, L.S., Graff-Radford, N.R., Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions (2010) Nat. Genet., 42, pp. 234-239; Van Der Zee, J., Gijselinck, I., Van Mossevelde, S., Perrone, F., Dillen, L., Heeman, B., TBK1 mutation spectrum in an extended european patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis (2017) Hum. Mutat., 38, pp. 297-309; Van Der Zee, J., Van Langenhove, T., Kovacs, G.G., Dillen, L., Deschamps, W., Engelborghs, S., Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration (2014) Acta. Neuropathol., 128, pp. 397-410; Vincent, A.E., Rosa, H.S., Alston, C.L., Grady, J.P., Rygiel, K.A., Rocha, M.C., Dysferlin mutations and mitochondrial dysfunction (2016) Neuromuscul. Disord., 26, pp. 782-788; Weiner, D.J., Wigdor, E.M., Ripke, S., Walters, R.K., Kosmicki, J.A., Grove, J., Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders (2017) Nat. Genet., 49, pp. 978-985; Williams, K.L., Topp, S., Yang, S., Smith, B., Fifita, J., Warraich, S.T., CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia (2016) Nat. Commun., 7, p. 11253; Wong, T.H., Pottier, C., Hondius, D.C., Meeter, L.H.H., Van Rooij, J.G.J., Melhem, S., Three VCP mutations in patients with frontotemporal dementia (2018) J. Alzheimers Dis., 65, pp. 1139-1146; Wood, E.M., Falcone, D., Suh, E., Irwin, D.J., Chen-Plotkin, A.S., Lee, E.B., Development and validation of pedigree classification criteria for frontotemporal lobar degeneration (2013) JAMA Neurol, 70, pp. 1411-1417; Xu, Y., Liu, X., Shen, J., Tian, W., Fang, R., Li, B., The Whole exome sequencing clarifies the genotype- Phenotype correlations in patients with early-onset dementia (2018) Aging Dis, 9, pp. 696-705; Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Common SNPs explain a large proportion of the heritability for human height (2010) Nat. Genet., 42, pp. 565-569; Zhang, M., Ferrari, R., Tartaglia, M.C., Keith, J., Surace, E.I., Wolf, U., A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers (2018) Brain, 141, pp. 2895-2907
PY - 2019
Y1 - 2019
N2 - Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease. Copyright © 2019 Ciani, Benussi, Bonvicini and Ghidoni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
AB - Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease. Copyright © 2019 Ciani, Benussi, Bonvicini and Ghidoni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
KW - Frontotemporal dementia
KW - Genetic common variants
KW - Genetic mutations
KW - Genetic rare variants
KW - Genome wide association study
KW - Next generation sequencing
KW - TAR DNA binding protein
KW - Article
KW - frontotemporal dementia
KW - gene
KW - gene locus
KW - gene mutation
KW - gene rearrangement
KW - genetic association
KW - genetic variability
KW - GRN gene
KW - human
KW - immune response
KW - MAPT gene
KW - next generation sequencing
KW - phenotype
KW - sequence homology
KW - signal transduction
KW - ubiquitination
KW - whole genome sequencing
U2 - 10.3389/fnins.2019.00506
DO - 10.3389/fnins.2019.00506
M3 - Article
VL - 13
JO - Front. Neurosci.
JF - Front. Neurosci.
SN - 1662-4548
IS - MAY
M1 - 506
ER -