TY - JOUR
T1 - Glutamine treatment attenuates the development of organ injury induced by zymosan administration in mice
AU - Mondello, Stefania
AU - Galuppo, Maria
AU - Mazzon, Emanuela
AU - Italiano, Domenico
AU - Mondello, Patrizia
AU - Aloisi, Carmela
AU - Cuzzocrea, Salvatore
PY - 2011/5/1
Y1 - 2011/5/1
N2 - Glutamine is the most abundant amino acid in the bloodstream. It is important in nucleotide synthesis, is anti-catabolic, has anti-oxidant properties via metabolism to glutathione, may enhance immune responsiveness and possesses immunoregulatory functions. Moreover, it reduces atrophy of intestinal mucosa in animals on total parenteral nutrition and prevents intestinal mucosal injury accompanying small bowel transplantation, chemotherapy and radiation. In the present study, we investigated the effects of glutamine on development of non-septic shock caused by zymosan. Mice received either zymosan (500 mg/kg, administered i.p., as a suspension in saline) or vehicle (saline). Glutamine (1.5 mg/kg i.p.) was administered 1 and 6 h after zymosan administration. Organ failure and systemic inflammation in mice were assessed 18 h after administration of zymosan and/or glutamine. Glutamine-treatment reduced the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan-injection and also attenuated the pancreatic and gut injury. Inflammatory and apoptotic parameters were evaluated to better investigate the effects of the glutamine-administration. So, by immunohistochemical analysis and in vitro assays, we have clearly showed that glutamine reduces: 1) the histological damage in pancreas and gut; 2) the inducible nitric oxide synthase expression; 3) nitrotyrosine and poly (ADP-ribose) formation; 4) TNF-α and IL-1β tissue and plasma levels; 5) FasL localization; and 6) alteration of the balance between Bax and Bcl-2. In addition, at the end of the observation period (7 days), zymosan causes severe illness in the mice characterized by a systemic toxicity, significant loss of body weight and mortality. Glutamine-treatment significantly reduced all these parameters.
AB - Glutamine is the most abundant amino acid in the bloodstream. It is important in nucleotide synthesis, is anti-catabolic, has anti-oxidant properties via metabolism to glutathione, may enhance immune responsiveness and possesses immunoregulatory functions. Moreover, it reduces atrophy of intestinal mucosa in animals on total parenteral nutrition and prevents intestinal mucosal injury accompanying small bowel transplantation, chemotherapy and radiation. In the present study, we investigated the effects of glutamine on development of non-septic shock caused by zymosan. Mice received either zymosan (500 mg/kg, administered i.p., as a suspension in saline) or vehicle (saline). Glutamine (1.5 mg/kg i.p.) was administered 1 and 6 h after zymosan administration. Organ failure and systemic inflammation in mice were assessed 18 h after administration of zymosan and/or glutamine. Glutamine-treatment reduced the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan-injection and also attenuated the pancreatic and gut injury. Inflammatory and apoptotic parameters were evaluated to better investigate the effects of the glutamine-administration. So, by immunohistochemical analysis and in vitro assays, we have clearly showed that glutamine reduces: 1) the histological damage in pancreas and gut; 2) the inducible nitric oxide synthase expression; 3) nitrotyrosine and poly (ADP-ribose) formation; 4) TNF-α and IL-1β tissue and plasma levels; 5) FasL localization; and 6) alteration of the balance between Bax and Bcl-2. In addition, at the end of the observation period (7 days), zymosan causes severe illness in the mice characterized by a systemic toxicity, significant loss of body weight and mortality. Glutamine-treatment significantly reduced all these parameters.
KW - Apoptosis
KW - Cytokine
KW - Glutamine
KW - Inflammation
KW - Zymosan-induced multiple organ failure
UR - http://www.scopus.com/inward/record.url?scp=79952819111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952819111&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2011.02.008
DO - 10.1016/j.ejphar.2011.02.008
M3 - Article
C2 - 21349270
AN - SCOPUS:79952819111
VL - 658
SP - 28
EP - 40
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
SN - 0014-2999
IS - 1
ER -