TY - JOUR
T1 - GNTB-A, a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease
AU - Bottino, C.
AU - Falco, M.
AU - Parolini, S.
AU - Marcenaro, E.
AU - Augugliaro, R.
AU - Sivori, S.
AU - Landi, E.
AU - Biassoni, R.
AU - Notarangelo, L. D.
AU - Moretta, L.
AU - Moretta, A.
PY - 2001/8/6
Y1 - 2001/8/6
N2 - In humans, natural killer (NK) cell function is regulated by a series of receptors and coreceptors with either triggering or inhibitory activity. Here we describe a novel 60-kD glycoprotein, termed NTB-A, that is expressed by all human NK, T, and B lymphocytes. Monoclonal antibody (mAb)-mediated cross-linking of NTB-A results in the induction of NK-mediated cytotoxicity. Similar to 2B4 (CD244) functioning as a coreceptor in the NK cell activation, NTB-A also triggers cytolytic activity only in NK cells expressing high surface densities of natural cytotoxicity receptors. This suggests that also NTB-A may function as a coreceptor in the process of NK cell activation. Molecular cloning of the cDNA coding for NTB-A molecule revealed a novel member of the immunoglobulin superfamily belonging to the CD2 subfamily. NTB-A is characterized, in its extracellular portion, by a distal V-type and a proximal C2-type domain and by a cytoplasmic portion containing three tyrosine-based motifs. NTB-A undergoes tyrosine phosphorylation and associates with the Src homology 2 domain-containing protein (SH2D1A) as well as with SH2 domain-containing phosphatases (SHPs). Importantly, analysis of NK cells derived from patients with X-linked lymphoproliferative disease (XLP) showed that the lack of SH2D1A protein profoundly affects the function not only of 2B4 but also of NTB-A. Thus, in XLP-NK cells, NTB-A mediates inhibitory rather than activating signals. These inhibitory signals are induced by the interaction of NTB-A with still undefined ligands expressed on Epstein-Barr virus (EBV)-infected target cells. Moreover, mAb-mediated masking of NTB-A can partially revert this inhibitory effect while a maximal recovery of target cell lysis can be obtained when both 2B4 and NTB-A are simultaneously masked. Thus, the altered function of NTB-A appears to play an important role in the inability of XLP-NK cells to kill EBV-infected target cells.
AB - In humans, natural killer (NK) cell function is regulated by a series of receptors and coreceptors with either triggering or inhibitory activity. Here we describe a novel 60-kD glycoprotein, termed NTB-A, that is expressed by all human NK, T, and B lymphocytes. Monoclonal antibody (mAb)-mediated cross-linking of NTB-A results in the induction of NK-mediated cytotoxicity. Similar to 2B4 (CD244) functioning as a coreceptor in the NK cell activation, NTB-A also triggers cytolytic activity only in NK cells expressing high surface densities of natural cytotoxicity receptors. This suggests that also NTB-A may function as a coreceptor in the process of NK cell activation. Molecular cloning of the cDNA coding for NTB-A molecule revealed a novel member of the immunoglobulin superfamily belonging to the CD2 subfamily. NTB-A is characterized, in its extracellular portion, by a distal V-type and a proximal C2-type domain and by a cytoplasmic portion containing three tyrosine-based motifs. NTB-A undergoes tyrosine phosphorylation and associates with the Src homology 2 domain-containing protein (SH2D1A) as well as with SH2 domain-containing phosphatases (SHPs). Importantly, analysis of NK cells derived from patients with X-linked lymphoproliferative disease (XLP) showed that the lack of SH2D1A protein profoundly affects the function not only of 2B4 but also of NTB-A. Thus, in XLP-NK cells, NTB-A mediates inhibitory rather than activating signals. These inhibitory signals are induced by the interaction of NTB-A with still undefined ligands expressed on Epstein-Barr virus (EBV)-infected target cells. Moreover, mAb-mediated masking of NTB-A can partially revert this inhibitory effect while a maximal recovery of target cell lysis can be obtained when both 2B4 and NTB-A are simultaneously masked. Thus, the altered function of NTB-A appears to play an important role in the inability of XLP-NK cells to kill EBV-infected target cells.
KW - Coreceptors function
KW - Epstein-Barr virus
KW - Natural killer cells
KW - Src homology 2 domain-containing protein
KW - X-linked lymphoproliferative disease
UR - http://www.scopus.com/inward/record.url?scp=0035817326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035817326&partnerID=8YFLogxK
U2 - 10.1084/jem.194.3.235
DO - 10.1084/jem.194.3.235
M3 - Article
C2 - 11489943
AN - SCOPUS:0035817326
VL - 194
SP - 235
EP - 246
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
SN - 0022-1007
IS - 3
ER -