Growth defects and impaired cognitivebehavioral abilities in mice with knockout for Eif4h, a gene located in the mouse homolog of the williams-beuren syndrome critical region

Simona Capossela, Luca Muzio, Alessandro Bertolo, Veronica Bianchi, Gabriele Dati, Linda Chaabane, Claudia Godi, Letterio S. Politi, Stefano Biffo, Patrizia D'Adamo, Antonello Mallamaci, Maria Pannese

Research output: Contribution to journalArticle


Protein synthesis is a tightly regulated, energy-consuming process. The control of mRNA translation into protein is fundamentally important for the fine-tuning of gene expression; additionally, precise translational control plays a critical role in many cellular processes, including development, cellular growth, proliferation, differentiation, synaptic plasticity, memory, and learning. Eukaryotic translation initiation factor 4h (Eif4h) encodes a protein involved in the process of protein synthesis, at the level of initiation phase. Its human homolog, WBSCR1, maps on 7q11.23, inside the 1.6 Mb region that is commonly deleted in patients affected by the Williams-Beuren syndrome, which is a complex neurodevelopmental disorder characterized by cardiovascular defects, cerebral dysplasias and a peculiar cognitive-behavioral profile. In this study, we generated knockout mice deficient in Eif4h. These mice displayed growth retardation with a significant reduction of body weight that began from the first week of postnatal development. Neuroanatomical profiling results generated by magnetic resonance imaging analysis revealed a smaller brain volume in null mice compared with controls as well as altered brain morphology, where anterior and posterior brain regions were differentially affected. The inactivation of Eif4h also led to a reduction in both the number and complexity of neurons. Behavioral studies revealed severe impairments of fear-related associative learning and memory formation. These alterations suggest that Eif4h might contribute to certain deficits associated with Williams-Beuren syndrome.

Original languageEnglish
Pages (from-to)1121-1135
Number of pages15
JournalAmerican Journal of Pathology
Issue number3
Publication statusPublished - Mar 2012


ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Cite this