HDL in infectious diseases and sepsis

Angela Pirillo, Alberico Luigi Catapano, Giuseppe Danilo Norata

Research output: Contribution to journalArticlepeer-review

Abstract

During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, whileserum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gramnegative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.

Original languageEnglish
Pages (from-to)483-508
Number of pages26
JournalHandbook of Experimental Pharmacology
Volume224
DOIs
Publication statusPublished - 2015

Keywords

  • Bacteria
  • HDL
  • Infections
  • Parasites
  • Virus

ASJC Scopus subject areas

  • Pharmacology, Toxicology and Pharmaceutics(all)
  • Biochemistry
  • Medicine(all)

Fingerprint

Dive into the research topics of 'HDL in infectious diseases and sepsis'. Together they form a unique fingerprint.

Cite this