Abstract
Original language | English |
---|---|
Pages (from-to) | 383-394 |
Number of pages | 12 |
Journal | J. Alzheimer's Dis. |
Volume | 68 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- European Alzheimer Disease Consortium
- FDG-PET
- head-to-head comparison
- prodromal Alzheimer's disease
- statistical parametric mapping
- volumetric region of interest
- fluorodeoxyglucose f 18
- adult
- aged
- Alzheimer disease
- Article
- controlled study
- diagnostic accuracy
- diagnostic test accuracy study
- female
- human
- intermethod comparison
- major clinical study
- male
- neuroimaging
- positron emission tomography
- predictive value
- priority journal
- receiver operating characteristic
- sensitivity and specificity
- support vector machine
- verbal memory test
- Youden index
Fingerprint Dive into the research topics of 'Head-to-Head Comparison among Semi-Quantification Tools of Brain FDG-PET to Aid the Diagnosis of Prodromal Alzheimer's Disease: Journal of Alzheimer's Disease'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Head-to-Head Comparison among Semi-Quantification Tools of Brain FDG-PET to Aid the Diagnosis of Prodromal Alzheimer's Disease : Journal of Alzheimer's Disease. / Brugnolo, A.; De Carli, F.; Pagani, M.; Morbelli, S.; Jonsson, C.; Chincarini, A.; Frisoni, G.B.; Galluzzi, S.; Perneczky, R.; Drzezga, A.; Van Berckel, B.N.M.; Ossenkoppele, R.; Didic, M.; Guedj, E.; Arnaldi, D.; Massa, F.; Grazzini, M.; Pardini, M.; Mecocci, P.; Dottorini, M.E.; Bauckneht, M.; Sambuceti, G.; Nobili, F.
In: J. Alzheimer's Dis., Vol. 68, No. 1, 2019, p. 383-394.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Head-to-Head Comparison among Semi-Quantification Tools of Brain FDG-PET to Aid the Diagnosis of Prodromal Alzheimer's Disease
T2 - Journal of Alzheimer's Disease
AU - Brugnolo, A.
AU - De Carli, F.
AU - Pagani, M.
AU - Morbelli, S.
AU - Jonsson, C.
AU - Chincarini, A.
AU - Frisoni, G.B.
AU - Galluzzi, S.
AU - Perneczky, R.
AU - Drzezga, A.
AU - Van Berckel, B.N.M.
AU - Ossenkoppele, R.
AU - Didic, M.
AU - Guedj, E.
AU - Arnaldi, D.
AU - Massa, F.
AU - Grazzini, M.
AU - Pardini, M.
AU - Mecocci, P.
AU - Dottorini, M.E.
AU - Bauckneht, M.
AU - Sambuceti, G.
AU - Nobili, F.
N1 - Export Date: 10 February 2020 CODEN: JADIF Correspondence Address: Brugnolo, A.; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health, University of Genoa, Largo Daneo, 3, Italy; email: Andrea.Brugnolo@unige.it Chemicals/CAS: fluorodeoxyglucose f 18, 63503-12-8 Funding details: Nuclear Physics Funding details: Consiglio Nazionale delle Ricerche Funding details: Chung Hua University Funding details: Technische Universität München Funding details: Aix-Marseille Université Funding details: Instituto Nazionale di Fisica Nucleare Funding details: Deutsches Zentrum für Neurodegenerative Erkrankungen Funding details: Conseil National de la Recherche Scientifique Funding text 1: aDepartment of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health (DINOGMI), University of Genoa, Italy bClinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy cInstitute of Bioimaging and Molecular Physiology, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy dInstitute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy eDepartment of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden fDepartment of Health Sciences (DISSAL), University of Genoa, Italy gNuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy hMedical Radiation Physics and Nuclear Medicine, Imaging and Physiology, Karolinska University Hospital, Stockholm, Sweden iNational Institute for Nuclear Physics (INFN), Genoa, Italy jLENITEM Laboratory of Epidemiology and Neuroimaging, IRCCS S. Giovanni di Dio-FBF, Brescia, Italy kUniversity Hospitals and University of Geneva, Geneva, Switzerland lDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany mDepartment of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany nGerman Center for Neurodegenerative Diseases (DZNE) Munich, Germany oNeuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College London of Science, Technology and Medicine, London, UK pDepartment of Nuclear Medicine, University Hospital of Cologne, Germany; previously at Department of Nuclear Medicine, Technische Universität, Munich, Germany qDepartment of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands rAPHM, CHU Timone, Service de Neurologie et Neuropsychologie, Aix-Marseille University, Marseille, France sAPHM, CHU Timone, Service de Médecine Nucléaire, CERIMED, Institut Fresnel, CNRS, Ecole Centrale Marseille, Aix-Marseille University, France tNeurology Clinics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy References: Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Scheltens, P., Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria (2007) Lancet Neurol, 6, pp. 734-746; Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., DeKosky, S.T., Barberger-Gateau, P., Delacourte, A., Scheltens, P., Revising the definition of Alzheimer's disease: A new lexicon (2010) Lancet Neurol, 9, pp. 1118-1127; Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., DeKosky, S.T., Cummings, J.L., Advancing research diagnostic criteria for Alzheimer's disease: The IWG-2 criteria (2014) Lancet Neurol, 13, pp. 614-629; Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Phelps, C.H., Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 280-292; Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Phelps, C.H., The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 270-279; McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Phelps, C.H., The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 263-269; Landau, S.M., Harvey, D., Madison, C.M., Reiman, E.M., Foster, N.L., Aisen, P.S., Petersen, R.C., Jagust, W.J., Comparing predictors of conversion and decline in mild cognitive impairment (2010) Neurology, 75, pp. 230-238. , Alzheimer's Disease Neuroimaging I; Scheinin, N.M., Scheinin, M., Rinne, J.O., Amyloid imaging as a surrogate marker in clinical trials in Alzheimer's disease (2011) Q J Nucl Med Mol Imaging, 55, pp. 265-279; Ritter, A., Cummings, J., Fluid biomarkers in clinical trials of Alzheimer's disease therapeutics (2015) Front Neurol, 6, p. 186; Frisoni, G.B., Bocchetta, M., Chetelat, G., Rabinovici, G.D., De Leon, M.J., Kaye, J., Reiman, E.M., DeCarli, C., Imaging markers for Alzheimer disease: Which vs how (2013) Neurology, 81, pp. 487-500; Kono, A.K., Ishii, K., Sofue, K., Miyamoto, N., Sakamoto, S., Mori, E., Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer's disease using FDG-PET and 3D-SSP (2007) Eur J Nucl Med Mol Imaging, 34, pp. 1490-1497; Ishii, K., Kono, A.K., Sasaki, H., Miyamoto, N., Fukuda, T., Sakamoto, S., Mori, E., Fully automatic diagnostic system for early-And late-onset mild Alzheimer's disease using FDG PET and 3D-SSP (2006) Eur J Nucl Med Mol Imaging, 33, pp. 575-583; Patterson, J.C., Lilien, D.L., Takalkar, A., Kelley, R.E., Minagar, A., Potential value of quantitative analysis of cerebral PET in early cognitive decline (2008) Am J Alzheimers Dis Other Demen, 23, pp. 586-592; Patterson, J.C., Lilien, D.L., Takalkar, A., Pinkston, J.B., Early detection of brain pathology suggestive of early AD using objective evaluation of FDG-PET scans (2010) Int J Alzheimers Dis, 2011, p. 946590; Van Der Gucht, A., Verger, A., Yagdigul, Y., Poussier, S., Joly, L., Watfa, G., Benetos, A., Marie, P.Y., Complementarity of visual and voxel-based FDG-PET analysis to detect MCI-like hypometabolic pattern in elderly patients with hypertension and isolated memory complaints (2015) Acta Radiol, 56, pp. 980-989; Yamane, T., Ikari, Y., Nishio, T., Ishii, K., Ishii, K., Kato, T., Ito, K., Group, J.A.S., Visual-statistical interpretation of (18)F-FDG-PET images for characteristic Alzheimer patterns in a multicenter study: Inter-rater concordance and relationship to automated quantitative evaluation (2014) AJNR Am J Neuroradiol, 35, pp. 244-249; Morbelli, S., Brugnolo, A., Bossert, I., Buschiazzo, A., Frisoni, G.B., Galluzzi, S., Van Berckel, B.N., Nobili, F., Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: An European Alzheimer's Disease Consortium (EADC) project (2015) J Alzheimers Dis, 44, pp. 815-826; Chen, K., Ayutyanont, N., Langbaum, J.B., Fleisher, A.S., Reschke, C., Leew Liu, X., Bandy, D., Reiman, E.M., Characterizing Alzheimer's disease using a hypometabolic convergence index (2011) Neuroimage, 56, pp. 52-60; Arbizu, J., Prieto, E., Martinez-Lage, P., Marti-Climent, J.M., Garcia-Granero, M., Lamet, I., Pastor, P., Weiner, M.W., Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer's disease dementia (2013) Eur J Nucl Med Mol Imaging, 40, pp. 1394-1405; Shaffer, J.L., Petrella, J.R., Sheldon, F.C., Choudhury, K.R., Calhoun, V.D., Coleman, R.E., Doraiswamy, P.M., Alzheimer's Disease Neuroimaging Initiative 2013 Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers Radiology, 266, pp. 583-591; Ito, K., Fukuyama, H., Senda, M., Ishii, K., Maeda, K., Yamamoto, Y., Ouchi, Y., Study Group, S., Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: A multicenter study (2015) J Alzheimers Dis, 45, pp. 543-552; Pagani, M., Nobili, F., Morbelli, S., Arnaldi, D., Giuliani, A., Oberg, J., Girtler, N., De Carli, F., Early identification of MCI converting to AD: A FDG PET study (2017) Eur J Nucl Med Mol Imaging, 44, pp. 2042-2052; Varrone, A., Asenbaum, S., Vander Borght, T., Booij, J., Nobili, F., Nagren, K., Darcourt, J., Van Laere, K., Eur J Nucl Med Mol Imaging, 36, pp. 2103-2110. , European Association of Nuclear Medicine Neuroimaging C 2009 EANM procedure guidelines for PET brain imaging using; Lehman, V.T., Carter, R.E., Claassen, D.O., Murphy, R.C., Lowe, V., Petersen, R.C., Peller, P.J., Visual assessment versus quantitative three-dimensional stereotactic surface projection fluorodeoxyglucose positron emission tomography for detection of mild cognitive impairment and Alzheimer disease (2012) Clin Nucl Med, 37, pp. 721-726; Pagani, M., De Carli, F., Morbelli, S., Oberg, J., Chincarini, A., Frisoni, G.B., Galluzzi, S., Nobili, F., Volume of interestbased ffluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls (2015) Neuroimage Clin, 7, pp. 34-42. , A European Alzheimer's Disease Consortium (EADC) study; Nobili, F., Festari, C., Altomare, D., Agosta, F., Orini, S., Van Laere, K., Arbizu, J., Boccardi, M., EANM-EANTask Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders (2018) Automated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disorders Eur J Nucl Med Mol Imaging, 45, pp. 1557-1566; Caroli, A., Prestia, A., Chen, K., Ayutyanont, N., Landau, S.M., Madison, C.M., Haense, C., Consortium, E., NESTDD, Alzheimer's Disease Neuroimaging Initiative 2012 Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: Head-To-head comparison J Nucl Med, 53, pp. 592-600; Ewers, M., Brendel, M., Rizk-Jackson, A., Rominger, A., Bartenstein, P., Schuff, N., Weiner, M.W., Alzheimer's disease neuroimaging initiative. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects (2014) Neuroimage Clin, 4, pp. 45-52; Shokouhi, S., Claassen, D., Kang, H., Ding, Z., Rogers, B., Mishra, A., Riddle, W.R., Alzheimer's disease neuroimaging initiative longitudinal progression of cognitive decline correlates with changes in the spatial pattern of brain 18ffdg pet (2013) J Nucl Med, 54, pp. 1564-1569; Segobin, S., La Joie, R., Ritz, L., Beaunieux, H., Desgranges, B., Chetelat, G., Pitel, A.L., Eustache, F., FDG-PET contributions to the patho physiology of memory impairment (2015) Neuropsychol Rev, 25, pp. 326-355; Caffarra, P., Ghetti, C., Ruffini, L., Spallazzi, M., Spotti, A., Barocco, F., Guzzo, C., Gardini, S., Brain metabolism correlates of the free and cued selective reminding test in mild cognitive impairment (2016) J Alzheimers Dis, 51, pp. 27-31; Signorini, M., Paulesu, E., Friston, K., Perani, D., Colleluori, A., Lucignani, G., Grassi, F., Fazio, F., Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative FDG PET A clinical validation of statistical parametric mapping (1999) Neuroimage, 9, pp. 63-80; Perani, D., Della Rosa, P.A., Cerami, C., Gallivanone, F., Fallanca, F., Vanoli, E.G., Panzacchi, A., Consortium, E., Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting (2014) Neuroimage Clin, 6, pp. 445-454; Cerami, C., Della Rosa, P.A., Magnani, G., Santangelo, R., Marcone, A., Cappa, S.F., Perani, D., Brain metabolic maps in mild cognitive impairment predict heterogeneity of progression to dementia (2015) Neuroimage Clin, 7, pp. 187-194; Presotto, L., Ballarini, T., Caminiti, S.P., Bettinardi, V., Gianolli, L., Perani, D., Validation of (18)F-FDG-PET singlesubject optimized SPM procedure with different PET scanners (2017) Neuroinformatics, 15, pp. 151-163; Hosaka, K., Ishii, K., Sakamoto, S., Sadato, N., Fukuda, H., Katot Sugimura, K., Senda, M., Validation of anatomical standardization of FDG PET images of normal brain: Comparison of SPM and NEUROSTAT (2005) Eur J Nucl Med Mol Imaging, 32, pp. 92-97. , Wellcome Department of Neurology, London, UK; Department of Internal Medicine University of Michigan; Martino, M.E., De Villoria, J.G., Lacalle-Aurioles, M., Olazaran, J., Cruz, I., Navarro, E., Garcia-Vazquez, V., Desco, M., Comparison of different methods of spatial normalization of FDG-PET brain images in the voxel-wise analysis of MCI patients and controls (2013) Ann Nucl Med, 27, pp. 600-609; Gallivanone, F., Della Rosa, P.A., Castiglioni, I., Statistical voxel-based methods and FDG PET brain imaging: Frontiers for the diagnosis of AD (2016) Curr Alzheimer Res, 13, pp. 682-694; Herholz, K., Salmon, E., Perani, D., Baron, J.C., Holthoff, V., Frolich, L., Schonknecht, P., Heiss, W.D., Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET (2002) Neuroimage, 17, pp. 302-316; Wahlund, L.O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M., Sjogren, M., Wallin, A., Scheltens, P., European Task Force on Age-Related White Matter Changes (2001) A new rating scale for age-related white matter changes applicable to MRI and CT Stroke, 32, pp. 1318-1322; Bartenstein, P., Asenbaum, S., Catafau, A., Halldin, C., Pilowski, L., Pupi, A., Tatsch, K., European association of nuclear medicine procedure guidelines for brain imaging using (2002) Eur J Nucl Med Mol Imaging, 29, pp. BP43-48. , European Association of Nuclear Medicine; Morbelli, S., Drzezga, A., Perneczky, R., Frisoni, G.B., Caroli, A., Van Berckel, B.N., Ossenkoppele, R., Nobili, F., Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer Disease Consortium (EADC) project (2012) Neurobiol Aging, 33, pp. 2533-2550; Morbelli, S., Perneczky, R., Drzezga, A., Frisoni, G.B., Caroli, A., Van Berckel, B.N., Ossenkoppele, R., Nobili, F., Metabolic networks underlying cognitive reserve in prodromal Alzheimer disease: A European Alzheimer disease consortium project (2013) J Nucl Med, 54, pp. 894-902; Gispert, J.D., Pascau, J., Reig, S., Martinez-Lazaro, R., Molina, V., Garcia-Barreno, P., Desco, M., Influence of the normalization template on the outcome of statistical parametric mapping of PET scans (2003) Neuroimage, 19, pp. 601-612; Della Rosa, P.A., Cerami, C., Gallivanone, F., Prestia, A., Caroli, A., Castiglioni, I., Gilardi, M.C., Consortium, E., A standardized-FDG-PET template for spatial normalization in statistical parametric mapping of dementia (2014) Neuroinformatics, 12, pp. 575-593; Soonawala, D., Amin, T., Ebmeier, K.P., Steele, J.D., Dougall, N.J., Best, J., Migneco, O., Scheidhauer, K., Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer's disease: Normalizing to cerebellar tracer uptake (2002) Neuroimage, 17, pp. 1193-1202; Brugnolo, A., Morbelli, S., Arnaldi, D., De Carli, F., Accardo, J., Bossert, I., Dessi, B., Nobili, F., Metabolic correlates of Rey auditory verbal learning test in elderly subjects with memory complaints (2014) J Alzheimers Dis, 39, pp. 103-113; Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo, A., Dessi, B., Pagani, M., Principal component analysis of FDG PET in amnestic MCI (2008) Eur J Nucl Med Mol Imaging, 35, pp. 2191-2202; Schmahmann, J.D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A.S., Kabani, N., Petrides, M., Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space (1999) Neuroimage, 10, pp. 233-260; Dukart, J., Mueller, K., Horstmann, A., Vogt, B., Frisch, S., Barthel, H., Becker, G., Schroeter, M.L., Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies (2010) Neuroimage, 49, pp. 1490-1495; Mosconi, L., Tsui, W.H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., Reiman, E.M., De Leon, M.J., Multicenter standardized 18F-FDGPETdiagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias (2008) J Nucl Med, 49, pp. 390-398; Herholz, K., Cerebral glucose metabolism in preclinical and prodromal Alzheimer's disease (2010) Expert Rev Neurother, 10, pp. 1667-1673; Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain (2002) Neuroimage, 15, pp. 273-289; Katostaras, T., Katostara, N., Area of the ROC curve when one point is available (2013) Stud Health Technol Inform, 190, pp. 219-221; Youden, W.J., Index for rating diagnostic tests (1950) Cancer, 3, pp. 32-35; Chen, F., Xue, Y., Tan, M.T., Chen, P., Response to comment on ?Efficient statistical tests to compareYouden index: Accounting for contingency correlation? (2016) Stat Med, 35, pp. 637-640; Smailagic, N., Vacante, M., Hyde, C., Martin, S., Ukoumunne, O., Sachpekidis, C., (1)(8) f-fdg pet for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (mci) (2015) Cochrane Database Syst Rev, 1, p. CD010632; Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., Ding, Y., Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-Term conversion to Alzheimer's disease in subjects with mild cognitive impairment (2012) Int J Clin Pract, 66, pp. 185-198; Mosconi, L., Tsui, W.H., De Santi, S., Li, J., Rusinek, H., Convit, A., Liy Boppana, M., De Leon, M.J., Reduced hippocampal metabolism in MCI and AD: Automated FDG-PET image analysis (2005) Neurology, 64, pp. 1860-1867; De Carli, F., Nobili, F., Pagani, M., Bauckneht, M., Massa, F., Grazzini, M., Jonsson, C., Arnaldi, D., Alzheimer's Disease Neuroimaging Initiative (2019) Accuracy and generalization capability of an automatic method for the detection of typical brain hypometabolism in prodromal Alzheimer disease Eur J Nucl Med Mol Imaging, 46, pp. 334-347; Pagani, M., Giuliani, A., Oberg, J., Chincarini, A., Morbelli, S., Brugnolo, A., Arnaldi, D., Nobili, F., Predicting the transition from normal aging to Alzheimer's disease: A statistical mechanistic evaluation of FDG-PET data (2016) Neuroimage, 141, pp. 282-290; Pagani, M., Giuliani, A., Oberg, J., De Carli, F., Morbelli, S., Girtler, N., Arnaldi, D., Nobili, F., Progressive disintegration of brain networking from normal aging to Alzheimer disease: Analysis of independent components of (18)F-FDG PET data (2017) J Nucl Med, 58, pp. 1132-1139; Gengsheng, Q., Hotilovac, L., Comparison of nonparametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test (2008) Stat Methods Med Res, 17, pp. 207-221
PY - 2019
Y1 - 2019
N2 - Background: Several automatic tools have been implemented for semi-quantitative assessment of brain [ 18 ]F-FDG-PET. Objective: We aimed to head-to-head compare the diagnostic performance among three statistical parametric mapping (SPM)-based approaches, another voxel-based tool (i.e., PALZ), and a volumetric region of interest (VROI-SVM)-based approach, in distinguishing patients with prodromal Alzheimer's disease (pAD) from controls. Methods: Sixty-two pAD patients (MMSE score = 27.0±1.6) and one hundred-nine healthy subjects (CTR) (MMSE score = 29.2±1.2) were enrolled in five centers of the European Alzheimer's Disease Consortium. The three SPM-based methods, based on different rationales, included 1) a cluster identified through the correlation analysis between [ 18 ]F-FDG-PET and a verbal memory test (VROI-1), 2) a VROI derived from the comparison between pAD and CTR (VROI-2), and 3) visual analysis of individual maps obtained by the comparison between each subject and CTR (SPM-Maps). The VROI-SVM approach was based on 6 VROI plus 6 VROI asymmetry values derived from the pAD versus CTR comparison thanks to support vector machine (SVM). Results: The areas under the ROC curves between pAD and CTR were 0.84 for VROI-1, 0.83 for VROI-2, 0.79 for SPM maps, 0.87 for PALZ, and 0.95 for VROI-SVM. Pairwise comparisons of Youden index did not show statistically significant differences in diagnostic performance between VROI-1, VROI-2, SPM-Maps, and PALZ score whereas VROI-SVM performed significantly (p <0.005) better than any of the other methods. Conclusion: The study confirms the good accuracy of [ 18 ]F-FDG-PET in discriminating healthy subjects from pAD and highlights that a non-linear, automatic VROI classifier based on SVM performs better than the voxel-based methods. © 2019 - IOS Press and the authors. All rights reserved.
AB - Background: Several automatic tools have been implemented for semi-quantitative assessment of brain [ 18 ]F-FDG-PET. Objective: We aimed to head-to-head compare the diagnostic performance among three statistical parametric mapping (SPM)-based approaches, another voxel-based tool (i.e., PALZ), and a volumetric region of interest (VROI-SVM)-based approach, in distinguishing patients with prodromal Alzheimer's disease (pAD) from controls. Methods: Sixty-two pAD patients (MMSE score = 27.0±1.6) and one hundred-nine healthy subjects (CTR) (MMSE score = 29.2±1.2) were enrolled in five centers of the European Alzheimer's Disease Consortium. The three SPM-based methods, based on different rationales, included 1) a cluster identified through the correlation analysis between [ 18 ]F-FDG-PET and a verbal memory test (VROI-1), 2) a VROI derived from the comparison between pAD and CTR (VROI-2), and 3) visual analysis of individual maps obtained by the comparison between each subject and CTR (SPM-Maps). The VROI-SVM approach was based on 6 VROI plus 6 VROI asymmetry values derived from the pAD versus CTR comparison thanks to support vector machine (SVM). Results: The areas under the ROC curves between pAD and CTR were 0.84 for VROI-1, 0.83 for VROI-2, 0.79 for SPM maps, 0.87 for PALZ, and 0.95 for VROI-SVM. Pairwise comparisons of Youden index did not show statistically significant differences in diagnostic performance between VROI-1, VROI-2, SPM-Maps, and PALZ score whereas VROI-SVM performed significantly (p <0.005) better than any of the other methods. Conclusion: The study confirms the good accuracy of [ 18 ]F-FDG-PET in discriminating healthy subjects from pAD and highlights that a non-linear, automatic VROI classifier based on SVM performs better than the voxel-based methods. © 2019 - IOS Press and the authors. All rights reserved.
KW - European Alzheimer Disease Consortium
KW - FDG-PET
KW - head-to-head comparison
KW - prodromal Alzheimer's disease
KW - statistical parametric mapping
KW - volumetric region of interest
KW - fluorodeoxyglucose f 18
KW - adult
KW - aged
KW - Alzheimer disease
KW - Article
KW - controlled study
KW - diagnostic accuracy
KW - diagnostic test accuracy study
KW - female
KW - human
KW - intermethod comparison
KW - major clinical study
KW - male
KW - neuroimaging
KW - positron emission tomography
KW - predictive value
KW - priority journal
KW - receiver operating characteristic
KW - sensitivity and specificity
KW - support vector machine
KW - verbal memory test
KW - Youden index
U2 - 10.3233/JAD-181022
DO - 10.3233/JAD-181022
M3 - Article
VL - 68
SP - 383
EP - 394
JO - J. Alzheimer's Dis.
JF - J. Alzheimer's Dis.
SN - 1387-2877
IS - 1
ER -