Heart rate and cardiovascular variability at high altitude.

Luciano Bernardi

Research output: Contribution to journalArticle

Abstract

Primary effect of hypobaric hypoxia on the circulation is a direct vasodilatory effect on the peripheral circulation, which is normally prevented by a sympathetic-induced vasoconstriction. Most of the clinical methods for testing the baroreflex sensitivity only evaluate the cardiac-vagal branch of the baroreflex, but at altitude it is also of importance to test the vascular effects of the baroreflex. This is possible by directly measuring sympathetic efferent activity (by microneurography) or by directly stimulating the carotid baroreceptors (by the neck suction). By cyclical stimulation of the carotid baroreceptors, neck suction-synchronous reflex oscillations could be observed in a large number of signals, including RR interval, blood pressure, microcirculation, muscle sympathetic nerve activity. An increase in fluctuations at the same frequency of the stimulus was considered an evidence of the ability of the carotid baroreceptors to modulate a given physiological signal. The sinusoidal neck suction was set at 0.10 Hz (low-frequency stimulation), or to a frequency close to- but distinct from- the respiratory signal (0.20 Hz, high frequency stimulation, whereas respiration was fixed to 0.25 Hz). The method is noninvasive, without side effects connected to use of drugs, and evaluates both the response to the heart and to the blood pressure of the baroreflex. The altitude-induced sympathetic activation was evidenced in sea level natives by a decrease in RR interval, an increase in blood pressure and in the 0.1Hz components of cardiac and vascular signals. The arterial baroflex was active on RR interval and also in blood pressure, even during acute exposure to high altitude, thus indicating that it was counteracting and modulating the increase in sympathetic tone. Signs of exaggerated sympathetic activation were evident in subjects with severe acute mountain sickness, while successful therapy was associated with a restoration of autonomic modulation. Conversely, sympathetic activation was reduced( and baroflex enhanced) in himalayan high altitude natives. In conclusion, a comprehensive understanding of the mechanism taking place during the adaptation to high altitude requires a multisignal approach, also integrated with equipment designed to provide specific provocative tests, such as those necessary to measure the cardiorespiratory interactions.

Fingerprint

Blood pressure
Baroreflex
Heart Rate
Pressoreceptors
Suction
Chemical activation
Blood Pressure
Neck
Population Groups
Blood Vessels
Microcirculation
Altitude Sickness
Sea level
Aptitude
Restoration
Muscle
Vasoconstriction
Oceans and Seas
Modulation
Reflex

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{075bb0da83914489b35603bc1d8fdd58,
title = "Heart rate and cardiovascular variability at high altitude.",
abstract = "Primary effect of hypobaric hypoxia on the circulation is a direct vasodilatory effect on the peripheral circulation, which is normally prevented by a sympathetic-induced vasoconstriction. Most of the clinical methods for testing the baroreflex sensitivity only evaluate the cardiac-vagal branch of the baroreflex, but at altitude it is also of importance to test the vascular effects of the baroreflex. This is possible by directly measuring sympathetic efferent activity (by microneurography) or by directly stimulating the carotid baroreceptors (by the neck suction). By cyclical stimulation of the carotid baroreceptors, neck suction-synchronous reflex oscillations could be observed in a large number of signals, including RR interval, blood pressure, microcirculation, muscle sympathetic nerve activity. An increase in fluctuations at the same frequency of the stimulus was considered an evidence of the ability of the carotid baroreceptors to modulate a given physiological signal. The sinusoidal neck suction was set at 0.10 Hz (low-frequency stimulation), or to a frequency close to- but distinct from- the respiratory signal (0.20 Hz, high frequency stimulation, whereas respiration was fixed to 0.25 Hz). The method is noninvasive, without side effects connected to use of drugs, and evaluates both the response to the heart and to the blood pressure of the baroreflex. The altitude-induced sympathetic activation was evidenced in sea level natives by a decrease in RR interval, an increase in blood pressure and in the 0.1Hz components of cardiac and vascular signals. The arterial baroflex was active on RR interval and also in blood pressure, even during acute exposure to high altitude, thus indicating that it was counteracting and modulating the increase in sympathetic tone. Signs of exaggerated sympathetic activation were evident in subjects with severe acute mountain sickness, while successful therapy was associated with a restoration of autonomic modulation. Conversely, sympathetic activation was reduced( and baroflex enhanced) in himalayan high altitude natives. In conclusion, a comprehensive understanding of the mechanism taking place during the adaptation to high altitude requires a multisignal approach, also integrated with equipment designed to provide specific provocative tests, such as those necessary to measure the cardiorespiratory interactions.",
author = "Luciano Bernardi",
year = "2007",
language = "English",
pages = "6679--6681",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Heart rate and cardiovascular variability at high altitude.

AU - Bernardi, Luciano

PY - 2007

Y1 - 2007

N2 - Primary effect of hypobaric hypoxia on the circulation is a direct vasodilatory effect on the peripheral circulation, which is normally prevented by a sympathetic-induced vasoconstriction. Most of the clinical methods for testing the baroreflex sensitivity only evaluate the cardiac-vagal branch of the baroreflex, but at altitude it is also of importance to test the vascular effects of the baroreflex. This is possible by directly measuring sympathetic efferent activity (by microneurography) or by directly stimulating the carotid baroreceptors (by the neck suction). By cyclical stimulation of the carotid baroreceptors, neck suction-synchronous reflex oscillations could be observed in a large number of signals, including RR interval, blood pressure, microcirculation, muscle sympathetic nerve activity. An increase in fluctuations at the same frequency of the stimulus was considered an evidence of the ability of the carotid baroreceptors to modulate a given physiological signal. The sinusoidal neck suction was set at 0.10 Hz (low-frequency stimulation), or to a frequency close to- but distinct from- the respiratory signal (0.20 Hz, high frequency stimulation, whereas respiration was fixed to 0.25 Hz). The method is noninvasive, without side effects connected to use of drugs, and evaluates both the response to the heart and to the blood pressure of the baroreflex. The altitude-induced sympathetic activation was evidenced in sea level natives by a decrease in RR interval, an increase in blood pressure and in the 0.1Hz components of cardiac and vascular signals. The arterial baroflex was active on RR interval and also in blood pressure, even during acute exposure to high altitude, thus indicating that it was counteracting and modulating the increase in sympathetic tone. Signs of exaggerated sympathetic activation were evident in subjects with severe acute mountain sickness, while successful therapy was associated with a restoration of autonomic modulation. Conversely, sympathetic activation was reduced( and baroflex enhanced) in himalayan high altitude natives. In conclusion, a comprehensive understanding of the mechanism taking place during the adaptation to high altitude requires a multisignal approach, also integrated with equipment designed to provide specific provocative tests, such as those necessary to measure the cardiorespiratory interactions.

AB - Primary effect of hypobaric hypoxia on the circulation is a direct vasodilatory effect on the peripheral circulation, which is normally prevented by a sympathetic-induced vasoconstriction. Most of the clinical methods for testing the baroreflex sensitivity only evaluate the cardiac-vagal branch of the baroreflex, but at altitude it is also of importance to test the vascular effects of the baroreflex. This is possible by directly measuring sympathetic efferent activity (by microneurography) or by directly stimulating the carotid baroreceptors (by the neck suction). By cyclical stimulation of the carotid baroreceptors, neck suction-synchronous reflex oscillations could be observed in a large number of signals, including RR interval, blood pressure, microcirculation, muscle sympathetic nerve activity. An increase in fluctuations at the same frequency of the stimulus was considered an evidence of the ability of the carotid baroreceptors to modulate a given physiological signal. The sinusoidal neck suction was set at 0.10 Hz (low-frequency stimulation), or to a frequency close to- but distinct from- the respiratory signal (0.20 Hz, high frequency stimulation, whereas respiration was fixed to 0.25 Hz). The method is noninvasive, without side effects connected to use of drugs, and evaluates both the response to the heart and to the blood pressure of the baroreflex. The altitude-induced sympathetic activation was evidenced in sea level natives by a decrease in RR interval, an increase in blood pressure and in the 0.1Hz components of cardiac and vascular signals. The arterial baroflex was active on RR interval and also in blood pressure, even during acute exposure to high altitude, thus indicating that it was counteracting and modulating the increase in sympathetic tone. Signs of exaggerated sympathetic activation were evident in subjects with severe acute mountain sickness, while successful therapy was associated with a restoration of autonomic modulation. Conversely, sympathetic activation was reduced( and baroflex enhanced) in himalayan high altitude natives. In conclusion, a comprehensive understanding of the mechanism taking place during the adaptation to high altitude requires a multisignal approach, also integrated with equipment designed to provide specific provocative tests, such as those necessary to measure the cardiorespiratory interactions.

UR - http://www.scopus.com/inward/record.url?scp=84903812057&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903812057&partnerID=8YFLogxK

M3 - Article

C2 - 18003558

AN - SCOPUS:84903812057

SP - 6679

EP - 6681

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -