Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure

Antonio D'Amore, Samuel K. Luketich, Giuseppe M. Raffa, Salim Olia, Giorgio Menallo, Antonino Mazzola, Flavio D'Accardi, Tamir Grunberg, Xinzhu Gu, Michele Pilato, Marina V. Kameneva, Vinay Badhwar, William R. Wagner

Research output: Contribution to journalArticle

Abstract

Valvular heart disease is currently treated with mechanical valves, which benefit from longevity, but are burdened by chronic anticoagulation therapy, or with bioprosthetic valves, which have reduced thromboembolic risk, but limited durability. Tissue engineered heart valves have been proposed to resolve these issues by implanting a scaffold that is replaced by endogenous growth, leaving autologous, functional leaflets that would putatively eliminate the need for anticoagulation and avoid calcification. Despite the diversity in fabrication strategies and encouraging results in large animal models, control over engineered valve structure-function remains at best partial. This study aimed to overcome these limitations by introducing double component deposition (DCD), an electrodeposition technique that employs multi-phase electrodes to dictate valve macro and microstructure and resultant function. Results in this report demonstrate the capacity of the DCD method to simultaneously control scaffold macro-scale morphology, mechanics and microstructure while producing fully assembled stent-less multi-leaflet valves composed of microscopic fibers. DCD engineered valve characterization included: leaflet thickness, biaxial properties, bending properties, and quantitative structural analysis of multi-photon and scanning electron micrographs. Quasi-static ex-vivo valve coaptation testing and dynamic organ level functional assessment in a pressure pulse duplicating device demonstrated appropriate acute valve functionality.

Original languageEnglish
Pages (from-to)25-37
Number of pages13
JournalBiomaterials
Volume150
DOIs
Publication statusPublished - Jan 1 2018

Keywords

  • Aortic
  • Bending mechanics
  • Biaxial mechanics
  • Electrodeposition
  • Electrospinning
  • Mitral
  • Pulmonary heart valve structure
  • Tissue engineered heart valve
  • Tricuspid

ASJC Scopus subject areas

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure'. Together they form a unique fingerprint.

  • Cite this

    D'Amore, A., Luketich, S. K., Raffa, G. M., Olia, S., Menallo, G., Mazzola, A., D'Accardi, F., Grunberg, T., Gu, X., Pilato, M., Kameneva, M. V., Badhwar, V., & Wagner, W. R. (2018). Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials, 150, 25-37. https://doi.org/10.1016/j.biomaterials.2017.10.011