Hepatic oxygen and lactate extraction during stagnant hypoxia

R. W. Samsel, D. Cherqui, A. Pietrabissa, W. M. Sanders, M. Roncella, J. C. Emond, P. T. Schumacker

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

As O2 delivery falls, tissues must extract increasing amounts of O2 from blood to maintain a normal O2 consumption. Below a critical delivery threshold, increases in O2 extraction cannot compensate for the falling delivery, and O2 uptake falls in a supply-dependent fashion. Numerous studies have identified a critical delivery in whole animals, but the regional contributions to the critical O2 delivery are less fully understood. In the present study, we explored the limits of O2 extraction in the isolated liver, seeking to determine 1) the normal relationship between O2 consumption and delivery in the liver and 2) the relationship of hepatic lactate extraction to the drop in hepatic O2 consumption at low O2 deliveries. To answer these questions, using support dogs as a source for oxygenated metabolically stable blood, we studied eight pump-perfused canine livers. By lowering the blood flow in a model of stagnant hypoxia, we explored the relationship between O2 consumption and delivery over the entire physiological range of O2 delivery. The critical O2 delivery was 28 ±5 (SD) ml·kg-1·min-1; the livers extracted 68 ± 9% of the delivered O2 before reaching supply dependence. This suggests that the liver has an O2 extraction capacity quite similar to the body as a whole and not different from other tissues that have been isolated. At high blood flows, the livers extracted ~10% of the lactate delivered by the blood, but the arteriovenous lactate differences were small. At low blood flows, however, the livers changed from lactate consumption to production. The O2 delivery coinciding with the dropoff in lactate extraction did not differ significantly from the critical O2 delivery. We conclude that reductions in lactate uptake by the liver do not precede the transition to O2 supply dependence.

Original languageEnglish
Pages (from-to)186-193
Number of pages8
JournalJournal of Applied Physiology
Volume70
Issue number1
Publication statusPublished - 1991

Fingerprint

Lactic Acid
Oxygen
Liver
Hypoxia
Tissue Extracts
Canidae
Dogs

ASJC Scopus subject areas

  • Endocrinology
  • Physiology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

Samsel, R. W., Cherqui, D., Pietrabissa, A., Sanders, W. M., Roncella, M., Emond, J. C., & Schumacker, P. T. (1991). Hepatic oxygen and lactate extraction during stagnant hypoxia. Journal of Applied Physiology, 70(1), 186-193.

Hepatic oxygen and lactate extraction during stagnant hypoxia. / Samsel, R. W.; Cherqui, D.; Pietrabissa, A.; Sanders, W. M.; Roncella, M.; Emond, J. C.; Schumacker, P. T.

In: Journal of Applied Physiology, Vol. 70, No. 1, 1991, p. 186-193.

Research output: Contribution to journalArticle

Samsel, RW, Cherqui, D, Pietrabissa, A, Sanders, WM, Roncella, M, Emond, JC & Schumacker, PT 1991, 'Hepatic oxygen and lactate extraction during stagnant hypoxia', Journal of Applied Physiology, vol. 70, no. 1, pp. 186-193.
Samsel RW, Cherqui D, Pietrabissa A, Sanders WM, Roncella M, Emond JC et al. Hepatic oxygen and lactate extraction during stagnant hypoxia. Journal of Applied Physiology. 1991;70(1):186-193.
Samsel, R. W. ; Cherqui, D. ; Pietrabissa, A. ; Sanders, W. M. ; Roncella, M. ; Emond, J. C. ; Schumacker, P. T. / Hepatic oxygen and lactate extraction during stagnant hypoxia. In: Journal of Applied Physiology. 1991 ; Vol. 70, No. 1. pp. 186-193.
@article{e4d7bc16eae246adaf00149dbd5304a4,
title = "Hepatic oxygen and lactate extraction during stagnant hypoxia",
abstract = "As O2 delivery falls, tissues must extract increasing amounts of O2 from blood to maintain a normal O2 consumption. Below a critical delivery threshold, increases in O2 extraction cannot compensate for the falling delivery, and O2 uptake falls in a supply-dependent fashion. Numerous studies have identified a critical delivery in whole animals, but the regional contributions to the critical O2 delivery are less fully understood. In the present study, we explored the limits of O2 extraction in the isolated liver, seeking to determine 1) the normal relationship between O2 consumption and delivery in the liver and 2) the relationship of hepatic lactate extraction to the drop in hepatic O2 consumption at low O2 deliveries. To answer these questions, using support dogs as a source for oxygenated metabolically stable blood, we studied eight pump-perfused canine livers. By lowering the blood flow in a model of stagnant hypoxia, we explored the relationship between O2 consumption and delivery over the entire physiological range of O2 delivery. The critical O2 delivery was 28 ±5 (SD) ml·kg-1·min-1; the livers extracted 68 ± 9{\%} of the delivered O2 before reaching supply dependence. This suggests that the liver has an O2 extraction capacity quite similar to the body as a whole and not different from other tissues that have been isolated. At high blood flows, the livers extracted ~10{\%} of the lactate delivered by the blood, but the arteriovenous lactate differences were small. At low blood flows, however, the livers changed from lactate consumption to production. The O2 delivery coinciding with the dropoff in lactate extraction did not differ significantly from the critical O2 delivery. We conclude that reductions in lactate uptake by the liver do not precede the transition to O2 supply dependence.",
author = "Samsel, {R. W.} and D. Cherqui and A. Pietrabissa and Sanders, {W. M.} and M. Roncella and Emond, {J. C.} and Schumacker, {P. T.}",
year = "1991",
language = "English",
volume = "70",
pages = "186--193",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Hepatic oxygen and lactate extraction during stagnant hypoxia

AU - Samsel, R. W.

AU - Cherqui, D.

AU - Pietrabissa, A.

AU - Sanders, W. M.

AU - Roncella, M.

AU - Emond, J. C.

AU - Schumacker, P. T.

PY - 1991

Y1 - 1991

N2 - As O2 delivery falls, tissues must extract increasing amounts of O2 from blood to maintain a normal O2 consumption. Below a critical delivery threshold, increases in O2 extraction cannot compensate for the falling delivery, and O2 uptake falls in a supply-dependent fashion. Numerous studies have identified a critical delivery in whole animals, but the regional contributions to the critical O2 delivery are less fully understood. In the present study, we explored the limits of O2 extraction in the isolated liver, seeking to determine 1) the normal relationship between O2 consumption and delivery in the liver and 2) the relationship of hepatic lactate extraction to the drop in hepatic O2 consumption at low O2 deliveries. To answer these questions, using support dogs as a source for oxygenated metabolically stable blood, we studied eight pump-perfused canine livers. By lowering the blood flow in a model of stagnant hypoxia, we explored the relationship between O2 consumption and delivery over the entire physiological range of O2 delivery. The critical O2 delivery was 28 ±5 (SD) ml·kg-1·min-1; the livers extracted 68 ± 9% of the delivered O2 before reaching supply dependence. This suggests that the liver has an O2 extraction capacity quite similar to the body as a whole and not different from other tissues that have been isolated. At high blood flows, the livers extracted ~10% of the lactate delivered by the blood, but the arteriovenous lactate differences were small. At low blood flows, however, the livers changed from lactate consumption to production. The O2 delivery coinciding with the dropoff in lactate extraction did not differ significantly from the critical O2 delivery. We conclude that reductions in lactate uptake by the liver do not precede the transition to O2 supply dependence.

AB - As O2 delivery falls, tissues must extract increasing amounts of O2 from blood to maintain a normal O2 consumption. Below a critical delivery threshold, increases in O2 extraction cannot compensate for the falling delivery, and O2 uptake falls in a supply-dependent fashion. Numerous studies have identified a critical delivery in whole animals, but the regional contributions to the critical O2 delivery are less fully understood. In the present study, we explored the limits of O2 extraction in the isolated liver, seeking to determine 1) the normal relationship between O2 consumption and delivery in the liver and 2) the relationship of hepatic lactate extraction to the drop in hepatic O2 consumption at low O2 deliveries. To answer these questions, using support dogs as a source for oxygenated metabolically stable blood, we studied eight pump-perfused canine livers. By lowering the blood flow in a model of stagnant hypoxia, we explored the relationship between O2 consumption and delivery over the entire physiological range of O2 delivery. The critical O2 delivery was 28 ±5 (SD) ml·kg-1·min-1; the livers extracted 68 ± 9% of the delivered O2 before reaching supply dependence. This suggests that the liver has an O2 extraction capacity quite similar to the body as a whole and not different from other tissues that have been isolated. At high blood flows, the livers extracted ~10% of the lactate delivered by the blood, but the arteriovenous lactate differences were small. At low blood flows, however, the livers changed from lactate consumption to production. The O2 delivery coinciding with the dropoff in lactate extraction did not differ significantly from the critical O2 delivery. We conclude that reductions in lactate uptake by the liver do not precede the transition to O2 supply dependence.

UR - http://www.scopus.com/inward/record.url?scp=0025966253&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025966253&partnerID=8YFLogxK

M3 - Article

VL - 70

SP - 186

EP - 193

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 1

ER -