Hepatitis B virus RNA-binding proteins associated with cytokine-induced clearance of viral RNA from the liver of transgenic mice

Tilman Heise, Luca G. Guidotti, Victoria J. Cavanaugh, Francis V. Chisari

Research output: Contribution to journalArticle

Abstract

Hepatitis B virus (HBV) gene expression is downregulated in the liver of HBV transgenic mice by a post-transcriptional mechanism that is triggered by the local production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) during intrahepatic inflammation (hepatitis). The molecular basis for this antiviral effect is unknown. In this study, we identified three HBV RNA-binding liver nuclear proteins (p45, p39, and p26) the relative abundance of which correlates with the abundance of HBV RNA in response to the induction of IFN-γ, and TNF-α. All three proteins bind to a 91-bp element located at the 5' end of a previously defined posttranscriptional regulatory element that is thought to mediate the nuclear export of HBV RNA. The presence of p45 correlates directly with the presence of HBV RNA, being detectable under baseline conditions when the viral RNA is abundant and undetectable when the viral RNA disappears in response to IFN-γ and TNF-α. In contrast, p26 is inversely related to HBV RNA, being detectable only when the viral RNA disappears following cytokine activation. Finally, p39 is constitutively expressed, and its abundance and mobility appear to be slightly increased by cytokine activation. These results suggest a model in which hepatocellular HBV RNA content might be controlled by the stabilizing and/or destabilizing influences of these RNA-binding proteins whose activity is regulated by cytokine-induced signaling pathways.

Original languageEnglish
Pages (from-to)474-481
Number of pages8
JournalJournal of Virology
Volume73
Issue number1
Publication statusPublished - 1999

ASJC Scopus subject areas

  • Immunology

Fingerprint Dive into the research topics of 'Hepatitis B virus RNA-binding proteins associated with cytokine-induced clearance of viral RNA from the liver of transgenic mice'. Together they form a unique fingerprint.

  • Cite this