TY - JOUR
T1 - High mutational burden in the mtDNA control region from aged muscles
T2 - A single-fiber study
AU - Del Bo, Roberto
AU - Crimi, Marco
AU - Sciacco, Monica
AU - Malferrari, Giulia
AU - Bordoni, Andreina
AU - Napoli, Laura
AU - Prelle, Alessandro
AU - Biunno, Ida
AU - Moggio, Maurizio
AU - Bresolin, Nereo
AU - Scarlato, Guglielmo
AU - Comi, Giacomo Pietro
PY - 2003/10
Y1 - 2003/10
N2 - The ageing process is associated with the accumulation of somatic mutations of mitochondrial DNA (mtDNA). The aged human skeletal muscle tissue presents a mosaic of fibers when stained histochemically for cytochrome c oxidase (COX) activity with a proportion of COX negative fibers. Given the potential relevance of any alteration in the mtDNA control region for replication, we analysed the correlation between the presence of mutations and their degree of heteroplasmy and the COX phenotype in individual muscle fibers of aged healthy donors. A region of the mtDNA D-loop was cloned from single fiber-derived DNA and multiple clones were analysed. This strategy showed that a high level of mutational burden is present in all fibers and that several types of mtDNA rearrangements are detectable: recurrent (A189G, T408A and T414G) and rare point mutations, length variations affecting the homopolymeric tract and the (CA)n repeat and macrodeletions. The aggregate mutational load in the D-loop region correlated with the single fiber COX phenotype, suggesting that the cumulative burden of multiple, individually rare, mtDNA alterations might functionally impair the mitochondrial genetic machinery.
AB - The ageing process is associated with the accumulation of somatic mutations of mitochondrial DNA (mtDNA). The aged human skeletal muscle tissue presents a mosaic of fibers when stained histochemically for cytochrome c oxidase (COX) activity with a proportion of COX negative fibers. Given the potential relevance of any alteration in the mtDNA control region for replication, we analysed the correlation between the presence of mutations and their degree of heteroplasmy and the COX phenotype in individual muscle fibers of aged healthy donors. A region of the mtDNA D-loop was cloned from single fiber-derived DNA and multiple clones were analysed. This strategy showed that a high level of mutational burden is present in all fibers and that several types of mtDNA rearrangements are detectable: recurrent (A189G, T408A and T414G) and rare point mutations, length variations affecting the homopolymeric tract and the (CA)n repeat and macrodeletions. The aggregate mutational load in the D-loop region correlated with the single fiber COX phenotype, suggesting that the cumulative burden of multiple, individually rare, mtDNA alterations might functionally impair the mitochondrial genetic machinery.
KW - Ageing
KW - Mitochondrial DNA
KW - Muscle
KW - Single fiber
KW - Somatic point mutations
UR - http://www.scopus.com/inward/record.url?scp=0141954395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141954395&partnerID=8YFLogxK
U2 - 10.1016/S0197-4580(02)00233-6
DO - 10.1016/S0197-4580(02)00233-6
M3 - Article
C2 - 12927765
AN - SCOPUS:0141954395
VL - 24
SP - 829
EP - 838
JO - Neurobiology of Aging
JF - Neurobiology of Aging
SN - 0197-4580
IS - 6
ER -