Abstract
Original language | English |
---|---|
Pages (from-to) | 664-685 |
Number of pages | 22 |
Journal | American Journal of Human Genetics |
Volume | 101 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- CLTC
- DHDDS
- epileptic encephalopathy
- GABBR2
- GABRB2
- NTRK2
- NUS1
- RAB11
- SNAP25
- adolescent
- adult
- Article
- Canada
- child
- CLTC gene
- data mining
- developmental and epileptic encephalopathy
- developmental delay
- DHDDS gene
- epilepsy
- female
- frameshift mutation
- GABBR2 gene
- GABRB2 gene
- gene
- gene deletion
- gene duplication
- gene identification
- gene mutation
- gene sequence
- gene targeting
- genetic association
- genetic linkage
- genetic variability
- human
- intellectual impairment
- major clinical study
- male
- missense mutation
- molecular diagnosis
- mutational analysis
- nonsense mutation
- NTRK2 gene
- NUS1 gene
- preschool child
- priority journal
- RAB11A gene
- school child
- SNAP25 gene
- whole genome sequencing
- young adult
- brain disease
- genetics
- genome-wide association study
- human genome
- meta analysis
- mutation
- procedures
- recurrent disease
- seizure
- Brain Diseases
- Child
- Child, Preschool
- Epilepsy
- Female
- Genome, Human
- Genome-Wide Association Study
- Humans
- Intellectual Disability
- Male
- Mutation
- Recurrence
- Seizures
Fingerprint
Dive into the research topics of 'High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. / Hamdan, F.F.; Myers, C.T.; Cossette, P. et al.
In: American Journal of Human Genetics, Vol. 101, No. 5, 2017, p. 664-685.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies
AU - Hamdan, F.F.
AU - Myers, C.T.
AU - Cossette, P.
AU - Lemay, P.
AU - Spiegelman, D.
AU - Laporte, A.D.
AU - Nassif, C.
AU - Diallo, O.
AU - Monlong, J.
AU - Cadieux-Dion, M.
AU - Dobrzeniecka, S.
AU - Meloche, C.
AU - Retterer, K.
AU - Cho, M.T.
AU - Rosenfeld, J.A.
AU - Bi, W.
AU - Massicotte, C.
AU - Miguet, M.
AU - Brunga, L.
AU - Regan, B.M.
AU - Mo, K.
AU - Tam, C.
AU - Schneider, A.
AU - Hollingsworth, G.
AU - FitzPatrick, D.R.
AU - Donaldson, A.
AU - Canham, N.
AU - Blair, E.
AU - Kerr, B.
AU - Fry, A.E.
AU - Thomas, R.H.
AU - Shelagh, J.
AU - Hurst, J.A.
AU - Brittain, H.
AU - Blyth, M.
AU - Lebel, R.R.
AU - Gerkes, E.H.
AU - Davis-Keppen, L.
AU - Stein, Q.
AU - Chung, W.K.
AU - Dorison, S.J.
AU - Benke, P.J.
AU - Fassi, E.
AU - Corsten-Janssen, N.
AU - Kamsteeg, E.-J.
AU - Mau-Them, F.T.
AU - Martinelli, S.
AU - Dallapiccola, B.
AU - Tartaglia, M.
AU - Nava, C.
N1 - Cited By :2 Export Date: 6 April 2018 CODEN: AJHGA Correspondence Address: Minassian, B.A.; Division of Child Neurology, Department of Pediatrics, University of Texas SouthwesternUnited States; email: berge.minassian@sickkids.ca Funding details: Genome Canada Funding details: RO1 NS069605, National Institute of Neurological Disorders and Stroke Funding details: OBI, Ontario Brain Institute Funding details: UofT, University of Toronto Funding text: We thank the individuals participating in this study and their families for their contributions. This study was funded by grants from Genome Canada and Génome Québec, the Jeanne and Jean-Louis Lévesque Foundation (to J.L.M.), the Michael Bahen Chair in Epilepsy Research (to B.A.M.), the Ontario Brain Institute (EpLink), the McLaughlin Foundation and the University of Toronto (to D.M.A. and B.A.M.), and the National Institute of Neurological Disorders and Stroke (RO1 NS069605 to H.C.M.). We thank the members of the massive parallel sequencing and bioinformatics teams at the McGill University and Genome Quebec Innovation Center for their services. S.M.-M. was supported by the University of Toronto McLaughlin Accelerator Grant in Genomic Medicine (MC-2013-08). See Supplemental Data for additional acknowledgements. References: Berg, A.T., Langfitt, J.T., Testa, F.M., Levy, S.R., DiMario, F., Westerveld, M., Kulas, J., Global cognitive function in children with epilepsy: a community-based study (2008) Epilepsia, 49, pp. 608-614; Tuchman, R., Cuccaro, M., Epilepsy and autism: neurodevelopmental perspective (2011) Curr. Neurol. Neurosci. Rep., 11, pp. 428-434; Shepherd, C., Hosking, G., Epilepsy in school children with intellectual impairments in Sheffield: the size and nature of the problem and the implications for service provision (1989) J. Ment. Defic. Res., 33, pp. 511-514; Ben-Ari, Y., Holmes, G.L., Effects of seizures on developmental processes in the immature brain (2006) Lancet Neurol., 5, pp. 1055-1063; Scheffer, I.E., Berkovic, S., Capovilla, G., Connolly, M.B., French, J., Guilhoto, L., Hirsch, E., Moshé, S.L., ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology (2017) Epilepsia, 58, pp. 512-521; Brooks-Kayal, A., Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children (2011) Epilepsia, 52, pp. 13-20; Allen, A.S., Berkovic, S.F., Cossette, P., Delanty, N., Dlugos, D., Eichler, E.E., Epstein, M.P., Han, Y., De novo mutations in epileptic encephalopathies (2013) Nature, 501, pp. 217-221; De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies (2014) Am. J. Hum. Genet., 95, pp. 360-370; Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., Kosmicki, J.A., Kirby, A., A framework for the interpretation of de novo mutation in human disease (2014) Nat. Genet., 46, pp. 944-950; Prevalence and architecture of de novo mutations in developmental disorders (2017) Nature, 542, pp. 433-438; Lelieveld, S.H., Reijnders, M.R., Pfundt, R., Yntema, H.G., Kamsteeg, E.J., de Vries, P., de Vries, B.B., Löhner, K., Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability (2016) Nat. Neurosci., 19, pp. 1194-1196; De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies (2016) Am. J. Hum. Genet., 99, pp. 287-298; Yang, H., Wang, K., Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR (2015) Nat. Protoc., 10, pp. 1556-1566; Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., Integrative genomics viewer (2011) Nat. Biotechnol., 29, pp. 24-26; Layer, R.M., Chiang, C., Quinlan, A.R., Hall, I.M., LUMPY: a probabilistic framework for structural variant discovery (2014) Genome Biol., 15, p. R84; Monlong, J., Meloche, C., Rouleau, G.A., Cossette, P., Girard, S.L., G, B., Human copy number variants are enriched in regions of low-mappability (2016) BioRxiv; Zarrei, M., MacDonald, J.R., Merico, D., Scherer, S.W., A copy number variation map of the human genome (2015) Nat. Rev. Genet., 16, pp. 172-183; Hiatt, J.B., Pritchard, C.C., Salipante, S.J., O'Roak, B.J., Shendure, J., Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation (2013) Genome Res., 23, pp. 843-854; O'Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., Phelps, I.G., Carvill, G., Ankenman, K., Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders (2012) Science, 338, pp. 1619-1622; Ware, J.S., Samocha, K.E., Homsy, J., Daly, M.J., Interpreting de novo Variation in Human Disease Using denovolyzeR (2015) Curr. Protoc. Hum. Genet., 87, pp. 1-15; Hino-Fukuyo, N., Kikuchi, A., Arai-Ichinoi, N., Niihori, T., Sato, R., Suzuki, T., Kudo, H., Kakisaka, Y., Genomic analysis identifies candidate pathogenic variants in 9 of 18 patients with unexplained West syndrome (2015) Hum. Genet., 134, pp. 649-658; Michaud, J.L., Lachance, M., Hamdan, F.F., Carmant, L., Lortie, A., Diadori, P., Major, P., Cossette, P., The genetic landscape of infantile spasms (2014) Hum. Mol. Genet., 23, pp. 4846-4858; de Ligt, J., Willemsen, M.H., van Bon, B.W., Kleefstra, T., Yntema, H.G., Kroes, T., Vulto-van Silfhout, A.T., Gilissen, C., Diagnostic exome sequencing in persons with severe intellectual disability (2012) N. Engl. J. Med., 367, pp. 1921-1929; Gilissen, C., Hehir-Kwa, J.Y., Thung, D.T., van de Vorst, M., van Bon, B.W., Willemsen, M.H., Kwint, M., Schenck, A., Genome sequencing identifies major causes of severe intellectual disability (2014) Nature, 511, pp. 344-347; Halvardson, J., Zhao, J.J., Zaghlool, A., Wentzel, C., Georgii-Hemming, P., Månsson, E., Ederth Sävmarker, H., Feuk, L., Mutations in HECW2 are associated with intellectual disability and epilepsy (2016) J. Med. Genet., 53, pp. 697-704; Hamdan, F.F., Srour, M., Capo-Chichi, J.M., Daoud, H., Nassif, C., Patry, L., Massicotte, C., Diallo, O., De novo mutations in moderate or severe intellectual disability (2014) PLoS Genet., 10, p. e1004772; Lopes, F., Barbosa, M., Ameur, A., Soares, G., de Sá, J., Dias, A.I., Oliveira, G., Calado, E., Identification of novel genetic causes of Rett syndrome-like phenotypes (2016) J. Med. Genet., 53, pp. 190-199; Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, B., Di Donato, N., Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study (2012) Lancet, 380, pp. 1674-1682; Large-scale discovery of novel genetic causes of developmental disorders (2015) Nature, 519, pp. 223-228; Francioli, L.C., Polak, P.P., Koren, A., Menelaou, A., Chun, S., Renkens, I., van Duijn, C.M., van Ommen, G., Genome-wide patterns and properties of de novo mutations in humans (2015) Nat. Genet., 47, pp. 822-826; Goldmann, J.M., Wong, W.S., Pinelli, M., Farrah, T., Bodian, D., Stittrich, A.B., Glusman, G., Roach, J.C., Parent-of-origin-specific signatures of de novo mutations (2016) Nat. Genet., 48, pp. 935-939; Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S.A., Jonasdottir, A., Rate of de novo mutations and the importance of father's age to disease risk (2012) Nature, 488, pp. 471-475; Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Patterson, K.E., The contribution of de novo coding mutations to autism spectrum disorder (2014) Nature, 515, pp. 216-221; Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Spector, E., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (2015) Genet. Med., 17, pp. 405-424; Berko, E.R., Cho, M.T., Eng, C., Shao, Y., Sweetser, D.A., Waxler, J., Robin, N.H., Mohassel, P., De novo missense variants in HECW2 are associated with neurodevelopmental delay and hypotonia (2017) J. Med. Genet., 54, pp. 84-86; Sobreira, N., Schiettecatte, F., Valle, D., Hamosh, A., GeneMatcher: a matching tool for connecting investigators with an interest in the same gene (2015) Hum. Mutat., 36, pp. 928-930; Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., Van Vooren, S., Carter, N.P., DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (2009) Am. J. Hum. Genet., 84, pp. 524-533; Yeo, G.S., Connie Hung, C.C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., O'Rahilly, S., Farooqi, I.S., A de novo mutation affecting human TrkB associated with severe obesity and developmental delay (2004) Nat. Neurosci., 7, pp. 1187-1189; Andero, R., Choi, D.C., Ressler, K.J., BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders (2014) Prog. Mol. Biol. Transl. Sci., 122, pp. 169-192; Yoshii, A., Constantine-Paton, M., Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease (2010) Dev. Neurobiol., 70, pp. 304-322; Xu, B., Goulding, E.H., Zang, K., Cepoi, D., Cone, R.D., Jones, K.R., Tecott, L.H., Reichardt, L.F., Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor (2003) Nat. Neurosci., 6, pp. 736-742; Isidor, B., Küry, S., Rosenfeld, J.A., Besnard, T., Schmitt, S., Joss, S., Davies, S.J., Schaaf, C.P., De Novo Truncating Mutations in the Kinetochore-Microtubules Attachment Gene CHAMP1 Cause Syndromic Intellectual Disability (2016) Hum. Mutat., 37, pp. 354-358; Jacob, T.C., Moss, S.J., Jurd, R., GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition (2008) Nat. Rev. Neurosci., 9, pp. 331-343; Srivastava, S., Cohen, J., Pevsner, J., Aradhya, S., McKnight, D., Butler, E., Johnston, M., Fatemi, A., A novel variant in GABRB2 associated with intellectual disability and epilepsy (2014) Am. J. Med. Genet. A., 164A, pp. 2914-2921; Bosch, D.G., Boonstra, F.N., de Leeuw, N., Pfundt, R., Nillesen, W.M., de Ligt, J., Gilissen, C., de Vries, B.B., Novel genetic causes for cerebral visual impairment (2016) Eur. J. Hum. Genet., 24, pp. 660-665; Ishii, A., Kang, J.Q., Schornak, C.C., Hernandez, C.C., Shen, W., Watkins, J.C., Macdonald, R.L., Hirose, S., A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy (2017) J. Med. Genet., 54, pp. 202-211; Baldridge, D., Heeley, J., Vineyard, M., Manwaring, L., Toler, T.L., Fassi, E., Fiala, E., Willing, M., The Exome Clinic and the role of medical genetics expertise in the interpretation of exome sequencing results (2017) Genet. Med., 19, pp. 1040-1048; Retterer, K., Juusola, J., Cho, M.T., Vitazka, P., Millan, F., Gibellini, F., Vertino-Bell, A., Monaghan, K.G., Clinical application of whole-exome sequencing across clinical indications (2016) Genet. Med., 18, pp. 696-704; Sajan, S.A., Jhangiani, S.N., Muzny, D.M., Gibbs, R.A., Lupski, J.R., Glaze, D.G., Kaufmann, W.E., Friez, M.J., Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2 (2017) Genet. Med., 19, pp. 13-19; Kasprowicz, J., Kuenen, S., Miskiewicz, K., Habets, R.L., Smitz, L., Verstreken, P., Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake (2008) J. Cell Biol., 182, pp. 1007-1016; Robinson, M.S., Forty Years of Clathrin-coated Vesicles (2015) Traffic, 16, pp. 1210-1238; DeMari, J., Mroske, C., Tang, S., Nimeh, J., Miller, R., Lebel, R.R., CLTC as a clinically novel gene associated with multiple malformations and developmental delay (2016) Am. J. Med. Genet. A., 170A, pp. 958-966; Helbig, K.L., Farwell Hagman, K.D., Shinde, D.N., Mroske, C., Powis, Z., Li, S., Tang, S., Helbig, I., Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy (2016) Genet. Med., 18, pp. 898-905; Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Cummings, B.B., Analysis of protein-coding genetic variation in 60,706 humans (2016) Nature, 536, pp. 285-291; Grabińska, K.A., Park, E.J., Sessa, W.C., cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases (2016) J. Biol. Chem., 291, pp. 18582-18590; Fujihashi, M., Zhang, Y.W., Higuchi, Y., Li, X.Y., Koyama, T., Miki, K., Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 4337-4342; Rebl, A., Anders, E., Wimmers, K., Goldammer, T., Characterization of dehydrodolichyl diphosphate synthase gene in rainbow trout (Oncorhynchus mykiss) (2009) Comp. Biochem. Physiol. B Biochem. Mol. Biol., 152, pp. 260-265; Zelinger, L., Banin, E., Obolensky, A., Mizrahi-Meissonnier, L., Beryozkin, A., Bandah-Rozenfeld, D., Frenkel, S., Schwartz, S.B., A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews (2011) Am. J. Hum. Genet., 88, pp. 207-215; Züchner, S., Dallman, J., Wen, R., Beecham, G., Naj, A., Farooq, A., Kohli, M.A., Konidari, I., Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa (2011) Am. J. Hum. Genet., 88, pp. 201-206; Sabry, S., Vuillaumier-Barrot, S., Mintet, E., Fasseu, M., Valayannopoulos, V., Héron, D., Dorison, N., Chantret, I., A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity (2016) Orphanet J. Rare Dis., 11, p. 84; Harrison, K.D., Park, E.J., Gao, N., Kuo, A., Rush, J.S., Waechter, C.J., Lehrman, M.A., Sessa, W.C., Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation (2011) EMBO J., 30, pp. 2490-2500; Park, E.J., Grabińska, K.A., Guan, Z., Stránecký, V., Hartmannová, H., Hodaňová, K., Barešová, V., Ondrušková, N., Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation (2014) Cell Metab., 20, pp. 448-457; Szafranski, P., Von Allmen, G.K., Graham, B.H., Wilfong, A.A., Kang, S.H., Ferreira, J.A., Upton, S.J., Rosenfeld, J.A., 6q22.1 microdeletion and susceptibility to pediatric epilepsy (2015) Eur. J. Hum. Genet., 23, pp. 173-179; Webster, E., Cho, M.T., Alexander, N., Desai, S., Naidu, S., Bekheirnia, M.R., Lewis, A., Chung, W.K., De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features (2016) Cold Spring Harb Mol Case Stud, 2, p. a001172; Kelly, E.E., Horgan, C.P., McCaffrey, M.W., Rab11 proteins in health and disease (2012) Biochem. Soc. Trans., 40, pp. 1360-1367; Bodrikov, V., Pauschert, A., Kochlamazashvili, G., Stuermer, C.A.O., Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons (2017) Exp. Neurol., 289, pp. 31-45; Correia, S.S., Bassani, S., Brown, T.C., Lisé, M.F., Backos, D.S., El-Husseini, A., Passafaro, M., Esteban, J.A., Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation (2008) Nat. Neurosci., 11, pp. 457-466; Huang, S.H., Wang, J., Sui, W.H., Chen, B., Zhang, X.Y., Yan, J., Geng, Z., Chen, Z.Y., BDNF-dependent recycling facilitates TrkB translocation to postsynaptic density during LTP via a Rab11-dependent pathway (2013) J. Neurosci., 33, pp. 9214-9230; Eathiraj, S., Mishra, A., Prekeris, R., Lambright, D.G., Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes (2006) J. Mol. Biol., 364, pp. 121-135; Shiba, T., Koga, H., Shin, H.W., Kawasaki, M., Kato, R., Nakayama, K., Wakatsuki, S., Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1 (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 15416-15421; Blein, S., Hawrot, E., Barlow, P., The metabotropic GABA receptor: molecular insights and their functional consequences (2000) Cell. Mol. Life Sci., 57, pp. 635-650; Antonucci, F., Corradini, I., Fossati, G., Tomasoni, R., Menna, E., Matteoli, M., SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions (2016) Front. Synaptic Neurosci., 8, p. 7; Südhof, T.C., Neurotransmitter release: the last millisecond in the life of a synaptic vesicle (2013) Neuron, 80, pp. 675-690; Corradini, I., Donzelli, A., Antonucci, F., Welzl, H., Loos, M., Martucci, R., De Astis, S., Wolfer, D., Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs (2014) Cereb. Cortex, 24, pp. 364-376; Watanabe, S., Yamamori, S., Otsuka, S., Saito, M., Suzuki, E., Kataoka, M., Miyaoka, H., Takahashi, M., Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice (2015) Epilepsy Res., 115, pp. 30-44; Dawidowski, D., Cafiso, D.S., Munc18-1 and the Syntaxin-1 N Terminus Regulate Open-Closed States in a t-SNARE Complex (2016) Structure, 24, pp. 392-400; Rohena, L., Neidich, J., Truitt Cho, M., Gonzalez, K.D., Tang, S., Devinsky, O., Chung, W.K., Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability (2013) Rare Dis., 1, p. e26314; Shen, X.M., Selcen, D., Brengman, J., Engel, A.G., Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability (2014) Neurology, 83, pp. 2247-2255; Shohat, S., Ben-David, E., Shifman, S., Varying Intolerance of Gene Pathways to Mutational Classes Explain Genetic Convergence across Neuropsychiatric Disorders (2017) Cell Rep., 18, pp. 2217-2227
PY - 2017
Y1 - 2017
N2 - Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy. © 2017 American Society of Human Genetics
AB - Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy. © 2017 American Society of Human Genetics
KW - CLTC
KW - DHDDS
KW - epileptic encephalopathy
KW - GABBR2
KW - GABRB2
KW - NTRK2
KW - NUS1
KW - RAB11
KW - SNAP25
KW - adolescent
KW - adult
KW - Article
KW - Canada
KW - child
KW - CLTC gene
KW - data mining
KW - developmental and epileptic encephalopathy
KW - developmental delay
KW - DHDDS gene
KW - epilepsy
KW - female
KW - frameshift mutation
KW - GABBR2 gene
KW - GABRB2 gene
KW - gene
KW - gene deletion
KW - gene duplication
KW - gene identification
KW - gene mutation
KW - gene sequence
KW - gene targeting
KW - genetic association
KW - genetic linkage
KW - genetic variability
KW - human
KW - intellectual impairment
KW - major clinical study
KW - male
KW - missense mutation
KW - molecular diagnosis
KW - mutational analysis
KW - nonsense mutation
KW - NTRK2 gene
KW - NUS1 gene
KW - preschool child
KW - priority journal
KW - RAB11A gene
KW - school child
KW - SNAP25 gene
KW - whole genome sequencing
KW - young adult
KW - brain disease
KW - genetics
KW - genome-wide association study
KW - human genome
KW - meta analysis
KW - mutation
KW - procedures
KW - recurrent disease
KW - seizure
KW - Brain Diseases
KW - Child
KW - Child, Preschool
KW - Epilepsy
KW - Female
KW - Genome, Human
KW - Genome-Wide Association Study
KW - Humans
KW - Intellectual Disability
KW - Male
KW - Mutation
KW - Recurrence
KW - Seizures
U2 - 10.1016/j.ajhg.2017.09.008
DO - 10.1016/j.ajhg.2017.09.008
M3 - Article
VL - 101
SP - 664
EP - 685
JO - American Journal of Human Genetics
JF - American Journal of Human Genetics
SN - 0002-9297
IS - 5
ER -