HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation

A. Verdina, G. Di Rocco, I. Virdia, L. Monteonofrio, V. Gatti, E. Policicchio, A. Bruselles, M. Tartaglia, S. Soddu

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.
Original languageEnglish
Pages (from-to)16744-16754
Number of pages11
JournalOncotarget
Volume8
Issue number10
Publication statusPublished - 2017

Fingerprint

Doxorubicin
Phosphorylation
Phosphotransferases
Phospho-Specific Antibodies
Post Translational Protein Processing
Caspases
DNA Damage
Colorectal Neoplasms
Mass Spectrometry
Cell Survival
Cell Count
Mutation
Growth
Proteins

Keywords

  • Cancer stem cells
  • DNA-damage response
  • HIPK2
  • Phosphorylation
  • caspase
  • doxorubicin
  • homeodomain interacting protein kinase 2
  • mutant protein
  • phosphotransferase
  • proline
  • protein p21
  • protein p53
  • serine
  • threonine
  • carrier protein
  • HIPK2 protein, human
  • Hipk2 protein, mouse
  • protein serine threonine kinase
  • antibody specificity
  • Article
  • autophosphorylation
  • cancer inhibition
  • cell count
  • cell nucleus
  • cell viability
  • cellular distribution
  • cellular stress response
  • colorectal cancer
  • controlled study
  • enzyme activation
  • enzyme active site
  • enzyme activity
  • enzyme analysis
  • enzyme localization
  • enzyme phosphorylation
  • human
  • human cell
  • mutation
  • protein cleavage
  • protein expression
  • radiation response
  • ultraviolet radiation
  • animal
  • Bone Neoplasms
  • drug effects
  • enzymology
  • genetic transfection
  • genetics
  • metabolism
  • mouse
  • osteosarcoma
  • phosphorylation
  • tumor cell line
  • Animals
  • Carrier Proteins
  • Cell Line, Tumor
  • Doxorubicin
  • Enzyme Activation
  • Humans
  • Mice
  • Osteosarcoma
  • Protein-Serine-Threonine Kinases
  • Transfection
  • Ultraviolet Rays

Cite this

Verdina, A., Di Rocco, G., Virdia, I., Monteonofrio, L., Gatti, V., Policicchio, E., ... Soddu, S. (2017). HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. Oncotarget, 8(10), 16744-16754.

HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. / Verdina, A.; Di Rocco, G.; Virdia, I.; Monteonofrio, L.; Gatti, V.; Policicchio, E.; Bruselles, A.; Tartaglia, M.; Soddu, S.

In: Oncotarget, Vol. 8, No. 10, 2017, p. 16744-16754.

Research output: Contribution to journalArticle

Verdina, A, Di Rocco, G, Virdia, I, Monteonofrio, L, Gatti, V, Policicchio, E, Bruselles, A, Tartaglia, M & Soddu, S 2017, 'HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation', Oncotarget, vol. 8, no. 10, pp. 16744-16754.
Verdina A, Di Rocco G, Virdia I, Monteonofrio L, Gatti V, Policicchio E et al. HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. Oncotarget. 2017;8(10):16744-16754.
Verdina, A. ; Di Rocco, G. ; Virdia, I. ; Monteonofrio, L. ; Gatti, V. ; Policicchio, E. ; Bruselles, A. ; Tartaglia, M. ; Soddu, S. / HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. In: Oncotarget. 2017 ; Vol. 8, No. 10. pp. 16744-16754.
@article{4176fd394ce54f02b1763e54cb441984,
title = "HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation",
abstract = "HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.",
keywords = "Cancer stem cells, DNA-damage response, HIPK2, Phosphorylation, caspase, doxorubicin, homeodomain interacting protein kinase 2, mutant protein, phosphotransferase, proline, protein p21, protein p53, serine, threonine, carrier protein, HIPK2 protein, human, Hipk2 protein, mouse, protein serine threonine kinase, antibody specificity, Article, autophosphorylation, cancer inhibition, cell count, cell nucleus, cell viability, cellular distribution, cellular stress response, colorectal cancer, controlled study, enzyme activation, enzyme active site, enzyme activity, enzyme analysis, enzyme localization, enzyme phosphorylation, human, human cell, mutation, protein cleavage, protein expression, radiation response, ultraviolet radiation, animal, Bone Neoplasms, drug effects, enzymology, genetic transfection, genetics, metabolism, mouse, osteosarcoma, phosphorylation, tumor cell line, Animals, Carrier Proteins, Cell Line, Tumor, Doxorubicin, Enzyme Activation, Humans, Mice, Osteosarcoma, Protein-Serine-Threonine Kinases, Transfection, Ultraviolet Rays",
author = "A. Verdina and {Di Rocco}, G. and I. Virdia and L. Monteonofrio and V. Gatti and E. Policicchio and A. Bruselles and M. Tartaglia and S. Soddu",
note = "Cited By :1 Export Date: 6 April 2018 Correspondence Address: Soddu, S.; Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCSItaly; email: silvia.soddu@ifo.gov.it Chemicals/CAS: caspase, 186322-81-6; doxorubicin, 23214-92-8, 25316-40-9; phosphotransferase, 9031-09-8, 9031-44-1; proline, 147-85-3, 7005-20-1; protein p21, 85306-28-1; serine, 56-45-1, 6898-95-9; threonine, 36676-50-3, 72-19-5; carrier protein, 80700-39-6; protein serine threonine kinase; Carrier Proteins; Doxorubicin; HIPK2 protein, human; Hipk2 protein, mouse; Protein-Serine-Threonine Kinases Tradenames: adriamycin References: Calzado, M.A., De La Vega, L., Munoz, E., Schmitz, M.L., From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response (2009) Cell Cycle, 8, pp. 1659-1664; D'Orazi, G., Rinaldo, C., Soddu, S., Updates on HIPK2: a resourceful oncosuppressor for clearing cancer (2012) J Exp Clin Cancer Res, 31, pp. 1-8; Hofmann, T.G., Glas, C., Bitomsky, N., HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis (2013) Bioessays, 35, pp. 55-64; Wook Choi, D., Yong Choi, C., HIPK2 modification code for cell death and survival (2014) Mol Cell Oncol, 1; de la Vega, L., Fr{\"o}bius, K., Moreno, R., Calzado, M.A., Geng, H., Schmitz, M.L., Control of nuclear HIPK2 localization and function by a SUMO interaction motif (2011) Biochim Biophys Acta, 13, pp. 283-297; Winter, M., Sombroek, D., Dauth, I., Moehlenbrink, J., Scheuermann, K., Crone, J., Hofmann, T.G., Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR (2008) Nat Cell Biol, 10, pp. 812-824; Rinaldo, C., Prodosmo, A., Mancini, F., Iacovelli, S., Sacchi, A., Moretti, F., Soddu, S., MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis (2007) Mol Cell, 25, pp. 739-750; Choi, D.W., Seo, Y.M., Kim, E.A., Sung, K.S., Ahn, J.W., Park, S.J., Lee, S.R., Choi, C.Y., Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1 (2008) J Biol Chem, 283, pp. 4682-4689; Sombroek, D.H.T., How cells switch HIPK2 on and off (2009) Cell Death Differ, 16, pp. 187-194; Kim, S.Y., Choi, D.W., Kim, E.A., Choi, C.Y., Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1 (2009) Cancer Lett, 279, pp. 177-184; D'Orazi, G., Cecchinelli, B., Bruno, T., Manni, I., Higashimoto, Y., Saito, S., Gostissa, M., Soddu, S., Homeodomaininteracting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis (2002) Nat Cell Biol, 4, pp. 11-19; Hofmann, T.G., M{\"o}ller, A., Sirma, H., Zentgraf, H., Taya, Y., Dr{\"o}ge, W., Will, H., Schmitz, M.L., Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2 (2002) Nat Cell Biol, 4, pp. 1-10; Zhang, Q., Yoshimatsu, Y., Hildebrand, J., Frisch, S.M., Goodman, R.H., Cell Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP (2003) Cell, 115, pp. 177-186; Dauth, I., Kr{\"u}ger, J., Hofmann, T.G., Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM (2007) Cancer Res, 67, pp. 2274-2279; Lazzari, C., Prodosmo, A., Siepi, F., Rinaldo, C., Galli, F., Gentileschi, M., Bartolazzi, A., Soddu, S., HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage (2011) Oncogene, 30, pp. 4802-4813; Gresko, E., Roscic, A., Ritterhoff, S., Vichalkovski, A., del Sal, G., Schmitz, M.L., Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2 (2006) EMBO J, 25, pp. 1883-1894; de la Vega, L., Grishina, I., Moreno, R., Kr{\"u}ger, M., Braun, T., Schmitz, M.L., A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress (2012) Mol Cell, 46, pp. 472-483; Saul, V.V., Schmitz, M.L., Post-translational modifications regulate HIPK2, a driver of proliferative diseases (2013) J Mol Med (Berl), 91, pp. 1051-1058; Saul, V.V., de la Vega, L., Milanovic, M., Kr{\"u}ger, M., Braun, T., Fritz-Wolf, K., Becker, K., Schmitz, M.L., HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop (2013) J Mol Cell Biol, 5, pp. 27-38; Siepi, F., Gatti, V., Camerini, S., Crescenzi, M., Soddu, S., HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation (2013) Biochim Biophys Acta, 1833, pp. 1443-1453; van der Laden, J., Soppa, U., Becker, W., Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK) (2015) Cell Commun Signal, 13, pp. 1-11; Bitomsky, N., Conrad, E., Moritz, C., Polonio-Vallon, T., Sombroek, D., Schultheiss, K., Glas, C., Hofmann, T.G., Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death (2013) Proc Natl Acad Sci U S A, 110, pp. E4203-E4212; Reuven, N., Adler, J., Porat, Z., Polonio-Vallon, T., Hofmann, T.G., Shaul, Y., The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage (2015) J Biol Chem, 290, pp. 16478-16488; Choi, D.W., Na, W., Kabir, M.H., Yi, E., Kwon, S., Yeom, J., Ahn, J.W., Choi, C.Y., WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation (2013) Mol Cell, 51, pp. 374-385; Lee, S., Shang, Y., Redmond, S.A., Urisman, A., Tang, A.A., Li, K.H., Burlingame, A.L., Huang, E.J., Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis (2016) Neuron, 91, pp. 41-55; Kwon, M.J., Min, S.K., Seo, J., Kim, D.H., Sung, C.O., Lim, M.S., Cho, J., Park, H.R., HIPK2 expression in progression of cutaneous epithelial neoplasm (2015) Int J Dermatol, 54, pp. 347-354; Nardinocchi, L., Puca, R., Givol, D., D'Orazi, G., HIPK2-a therapeutical target to be (re)activated for tumor suppression: role in p53 activation and HIF-1a inhibition (2010) Cell Cycle, 9, pp. 1270-1275; Fan, Y., Wang, N., Chuang, P., John, C., He Role of HIPK2 in kidney fibrosis (2014) Kidney International Supplements, 4, pp. 97-101; Li, X.L., Arai, Y., Harada, H., Shima, Y., Yoshida, H., Rokudai, S., Aikawa, Y., Kitabayashi, I., Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1-and p53-mediated transcription (2007) Oncogene, 26, pp. 7231-7239; De Angelis, M.L., Zeuner, A., Policicchio, E., Russo, G., Bruselles, A., Signore, M., Vitale, S., Amoreo, C.A., Cancer Stem Cell-Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance (2016) Stem Cells Transl Med, 5, pp. 511-523; Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., Shendure, J., A general framework for estimating the relative pathogenicity of human genetic variants (2014) Nat Genet, 46, pp. 310-315; Wiggins, A.K., Wei, G., Doxakis, E., Wong, C., Tang, A.A., Zang, K., Luo, E.J., Huang, E.J., Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival (2004) J Cell Biol, 167, pp. 257-267; Zhang, J., Pho, V., Bonasera, S.J., Holtzman, J., Tang, A.T., Hellmuth, J., Tang, S., Huang, E.J., Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons (2007) Nat Neurosci, 10, pp. 77-96; Rinaldo, C., Moncada, A., Gradi, A., Ciuffini, L., D'Eliseo, D., Siepi, F., Prodosmo, A., Soddu, S., HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody (2012) Mol Cell, 47, pp. 87-98; Puca, R., Nardinocchi, L., Givol, D., D'Orazi, G., Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells (2010) Oncogene, 29, pp. 4378-4387; Taira, N., Nihira, K., Yamaguchi, T., Miki, Y., Yoshida, K., DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage (2007) Mol Cell, 25, pp. 725-738; Di Rocco, G., Verdina, A., Gatti, V., Virdia, I., Toietta, G., Todaro, M., Stassi, G., Soddu, S., Apoptosis induced by a HIPK2 fulllength-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform (2016) Oncotarget, 7, pp. 1675-1686; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760; McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., DePristo, M.A., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data (2010) Genome Res, 20, pp. 1297-1303; Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Getz, G., Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples (2013) Nat Biotechnol, 31, pp. 213-219; DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., Kernytsky, A.M., A framework for variation discovery and genotyping using next-generation DNA sequencing data (2011) Nat Genet, 43, pp. 491-498; Cordeddu, V., Redeker, B., Stellacci, E., Jongejan, A., Fragale, A., Bradley, T.E., Anselmi, M., Carvalho, D.R., Mutations in ZBTB20 cause Primrose syndrome (2014) Nat Genet, 46, pp. 815-817; Niceta, M., Stellacci, E., Gripp, K.W., Zampino, G., Kousi, M., Anselmi, M., Traversa, A., Bruselles, A., Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a Down syndrome-like Facies (2015) Am J Hum Genet, 96, pp. 816-825; Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Ruden, D.M., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 (2012) Fly (Austin), 6, pp. 80-92; Liu, X., Jian, X., Boerwinkle, E., dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations (2013) Hum Mutat, 34, pp. E2393-E2402; Kort{\"u}m, F., Caputo, V., Bauer, C.K., Stella, L., Ciolfi, A., Alawi, M., Bocchinfuso, G., Leuzzi, V., Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome (2015) Nat Genet, 47, pp. 661-667; Flex, E., Niceta, M., Cecchetti, S., Thiffault, I., Au, M.G., Capuano, A., Piermarin, E., Haaxma, C.A., Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy (2016) Am J Hum Genet, 99, pp. 1-12; Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., De Maria, R., Identification and expansion of human colon-cancer-initiating cells (2007) Nature, 445, pp. 111-115; Polonio-Vallon, T., Kirkpatrick, J., Krijgsveld, J., Hofmann, T.G., Src kinase modulates the apoptotic p53 pathway by altering HIPK2 localization (2014) Cell Cycle, 13, pp. 115-125; DeNardo, B.D., Holloway, M.P., Ji, Q., Nguyen, K.T., Cheng, Y., Valentine, M.B., Salomon, A., Altura, R.A., Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IRsignaling pathways in neuroblastoma (2013) PLoS One, 8; Bai, Y., Li, J., Fang, B., Edwards, A., Zhang, G., Bui, M., Eschrich, S., Haura, E.B., Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors (2012) Cancer Res, 72, pp. 2501-2511; Bian, Y., Song, C., Cheng, K., Dong, M., Wang, F., Huang, J., Sun, D., Zou, H., An enzyme assisted RP-RPLC approach for in-depth analysis of human liverphosphoproteome (2014) J Proteomics, 96, pp. 253-262; Wu, X., Tian, L., Li, J., Zhang, Y., Han, V., Li, Y., Xu, X., Zhong, C.Q., Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylationby quantitative phosphoproteomics (2012) Mol Cell Proteomics, 11, pp. 1640-1651; Klammer, M., Kaminski, M., Zedler, A., Oppermann, F., Blencke, S., Marx, S., M{\"u}ller, S., Schaab, C., Phosphosignature predicts dasatinib response in non-small cell lung cancer (2012) Mol Cell Proteomics, 11, pp. 651-668; Goswami, T., Li, X., Smith, A.M., Luderowski, E.M., Vincent, J.J., Rush, J., Ballif, B.A., Comparative phosphoproteomic analysis of neonatal and adult murine brain (2012) Proteomics, 12, pp. 2185-2189; Yi, T., Zhai, B., Yu, Y., Kiyotsugu, Y., Raschle, T., Etzkorn, M., Seo, H.C., Wagner, G., Quantitative phosphoproteomic analysis reveals system-wide signaling pathwaysdownstream of SDF-1/CXCR4 in breast cancer stem cells (2014) Proc Natl Acad Sci U S A, 111, pp. E2182-E2190; Helou, Y.A., Nguyen, V., Beik, S.P., Salomon, A.R., ERK positive feedback regulates a widespread network of tyrosine phosphorylation sitesacross canonical T cell signaling and actin cytoskeletal proteins in Jurkat T cells (2013) PLoS One, 8; Humphrey, S.J., Yang, G., Yang, P., Fazakerley, D.J., St{\"o}ckli, J., Yang, J.Y., James, D.E., Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2 (2013) Cell Metab, 17, pp. 1009-1020; Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., Vill{\'e}n, J., Gygi, S.P., A tissue-specific atlas of mouse protein phosphorylation and expression (2010) Cell, 143, pp. 1174-1189; Stuart, S.A., Houel, S., Lee, T., Wang, N., Old, W.M., Ahn, N.G., A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells (2015) Mol Cell Proteomics, 14, pp. 1599-1615; Mertins, P., Qiao, J.W., Patel, J., Udeshi, N.D., Clauser, K.R., Mani, D.R., Burgess, M.W., Carr, S.A., Integrated proteomic analysis of post-translational modifications by serial enrichment (2013) Nat Methods, 10, pp. 634-637; Oppermann, F.S., Gnad, F., Olsen, J.V., Hornberger, R., Greff, Z., K{\'e}ri, G., Mann, M., Daub, H., Large-scale proteomics analysis of the human kinome (2009) Mol Cell Proteomics, 8, pp. 1751-1764",
year = "2017",
language = "English",
volume = "8",
pages = "16744--16754",
journal = "Oncotarget",
issn = "1949-2553",
publisher = "Impact Journals LLC",
number = "10",

}

TY - JOUR

T1 - HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation

AU - Verdina, A.

AU - Di Rocco, G.

AU - Virdia, I.

AU - Monteonofrio, L.

AU - Gatti, V.

AU - Policicchio, E.

AU - Bruselles, A.

AU - Tartaglia, M.

AU - Soddu, S.

N1 - Cited By :1 Export Date: 6 April 2018 Correspondence Address: Soddu, S.; Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCSItaly; email: silvia.soddu@ifo.gov.it Chemicals/CAS: caspase, 186322-81-6; doxorubicin, 23214-92-8, 25316-40-9; phosphotransferase, 9031-09-8, 9031-44-1; proline, 147-85-3, 7005-20-1; protein p21, 85306-28-1; serine, 56-45-1, 6898-95-9; threonine, 36676-50-3, 72-19-5; carrier protein, 80700-39-6; protein serine threonine kinase; Carrier Proteins; Doxorubicin; HIPK2 protein, human; Hipk2 protein, mouse; Protein-Serine-Threonine Kinases Tradenames: adriamycin References: Calzado, M.A., De La Vega, L., Munoz, E., Schmitz, M.L., From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response (2009) Cell Cycle, 8, pp. 1659-1664; D'Orazi, G., Rinaldo, C., Soddu, S., Updates on HIPK2: a resourceful oncosuppressor for clearing cancer (2012) J Exp Clin Cancer Res, 31, pp. 1-8; Hofmann, T.G., Glas, C., Bitomsky, N., HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis (2013) Bioessays, 35, pp. 55-64; Wook Choi, D., Yong Choi, C., HIPK2 modification code for cell death and survival (2014) Mol Cell Oncol, 1; de la Vega, L., Fröbius, K., Moreno, R., Calzado, M.A., Geng, H., Schmitz, M.L., Control of nuclear HIPK2 localization and function by a SUMO interaction motif (2011) Biochim Biophys Acta, 13, pp. 283-297; Winter, M., Sombroek, D., Dauth, I., Moehlenbrink, J., Scheuermann, K., Crone, J., Hofmann, T.G., Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR (2008) Nat Cell Biol, 10, pp. 812-824; Rinaldo, C., Prodosmo, A., Mancini, F., Iacovelli, S., Sacchi, A., Moretti, F., Soddu, S., MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis (2007) Mol Cell, 25, pp. 739-750; Choi, D.W., Seo, Y.M., Kim, E.A., Sung, K.S., Ahn, J.W., Park, S.J., Lee, S.R., Choi, C.Y., Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1 (2008) J Biol Chem, 283, pp. 4682-4689; Sombroek, D.H.T., How cells switch HIPK2 on and off (2009) Cell Death Differ, 16, pp. 187-194; Kim, S.Y., Choi, D.W., Kim, E.A., Choi, C.Y., Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1 (2009) Cancer Lett, 279, pp. 177-184; D'Orazi, G., Cecchinelli, B., Bruno, T., Manni, I., Higashimoto, Y., Saito, S., Gostissa, M., Soddu, S., Homeodomaininteracting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis (2002) Nat Cell Biol, 4, pp. 11-19; Hofmann, T.G., Möller, A., Sirma, H., Zentgraf, H., Taya, Y., Dröge, W., Will, H., Schmitz, M.L., Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2 (2002) Nat Cell Biol, 4, pp. 1-10; Zhang, Q., Yoshimatsu, Y., Hildebrand, J., Frisch, S.M., Goodman, R.H., Cell Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP (2003) Cell, 115, pp. 177-186; Dauth, I., Krüger, J., Hofmann, T.G., Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM (2007) Cancer Res, 67, pp. 2274-2279; Lazzari, C., Prodosmo, A., Siepi, F., Rinaldo, C., Galli, F., Gentileschi, M., Bartolazzi, A., Soddu, S., HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage (2011) Oncogene, 30, pp. 4802-4813; Gresko, E., Roscic, A., Ritterhoff, S., Vichalkovski, A., del Sal, G., Schmitz, M.L., Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2 (2006) EMBO J, 25, pp. 1883-1894; de la Vega, L., Grishina, I., Moreno, R., Krüger, M., Braun, T., Schmitz, M.L., A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress (2012) Mol Cell, 46, pp. 472-483; Saul, V.V., Schmitz, M.L., Post-translational modifications regulate HIPK2, a driver of proliferative diseases (2013) J Mol Med (Berl), 91, pp. 1051-1058; Saul, V.V., de la Vega, L., Milanovic, M., Krüger, M., Braun, T., Fritz-Wolf, K., Becker, K., Schmitz, M.L., HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop (2013) J Mol Cell Biol, 5, pp. 27-38; Siepi, F., Gatti, V., Camerini, S., Crescenzi, M., Soddu, S., HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation (2013) Biochim Biophys Acta, 1833, pp. 1443-1453; van der Laden, J., Soppa, U., Becker, W., Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK) (2015) Cell Commun Signal, 13, pp. 1-11; Bitomsky, N., Conrad, E., Moritz, C., Polonio-Vallon, T., Sombroek, D., Schultheiss, K., Glas, C., Hofmann, T.G., Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death (2013) Proc Natl Acad Sci U S A, 110, pp. E4203-E4212; Reuven, N., Adler, J., Porat, Z., Polonio-Vallon, T., Hofmann, T.G., Shaul, Y., The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage (2015) J Biol Chem, 290, pp. 16478-16488; Choi, D.W., Na, W., Kabir, M.H., Yi, E., Kwon, S., Yeom, J., Ahn, J.W., Choi, C.Y., WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation (2013) Mol Cell, 51, pp. 374-385; Lee, S., Shang, Y., Redmond, S.A., Urisman, A., Tang, A.A., Li, K.H., Burlingame, A.L., Huang, E.J., Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis (2016) Neuron, 91, pp. 41-55; Kwon, M.J., Min, S.K., Seo, J., Kim, D.H., Sung, C.O., Lim, M.S., Cho, J., Park, H.R., HIPK2 expression in progression of cutaneous epithelial neoplasm (2015) Int J Dermatol, 54, pp. 347-354; Nardinocchi, L., Puca, R., Givol, D., D'Orazi, G., HIPK2-a therapeutical target to be (re)activated for tumor suppression: role in p53 activation and HIF-1a inhibition (2010) Cell Cycle, 9, pp. 1270-1275; Fan, Y., Wang, N., Chuang, P., John, C., He Role of HIPK2 in kidney fibrosis (2014) Kidney International Supplements, 4, pp. 97-101; Li, X.L., Arai, Y., Harada, H., Shima, Y., Yoshida, H., Rokudai, S., Aikawa, Y., Kitabayashi, I., Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1-and p53-mediated transcription (2007) Oncogene, 26, pp. 7231-7239; De Angelis, M.L., Zeuner, A., Policicchio, E., Russo, G., Bruselles, A., Signore, M., Vitale, S., Amoreo, C.A., Cancer Stem Cell-Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance (2016) Stem Cells Transl Med, 5, pp. 511-523; Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., Shendure, J., A general framework for estimating the relative pathogenicity of human genetic variants (2014) Nat Genet, 46, pp. 310-315; Wiggins, A.K., Wei, G., Doxakis, E., Wong, C., Tang, A.A., Zang, K., Luo, E.J., Huang, E.J., Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival (2004) J Cell Biol, 167, pp. 257-267; Zhang, J., Pho, V., Bonasera, S.J., Holtzman, J., Tang, A.T., Hellmuth, J., Tang, S., Huang, E.J., Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons (2007) Nat Neurosci, 10, pp. 77-96; Rinaldo, C., Moncada, A., Gradi, A., Ciuffini, L., D'Eliseo, D., Siepi, F., Prodosmo, A., Soddu, S., HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody (2012) Mol Cell, 47, pp. 87-98; Puca, R., Nardinocchi, L., Givol, D., D'Orazi, G., Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells (2010) Oncogene, 29, pp. 4378-4387; Taira, N., Nihira, K., Yamaguchi, T., Miki, Y., Yoshida, K., DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage (2007) Mol Cell, 25, pp. 725-738; Di Rocco, G., Verdina, A., Gatti, V., Virdia, I., Toietta, G., Todaro, M., Stassi, G., Soddu, S., Apoptosis induced by a HIPK2 fulllength-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform (2016) Oncotarget, 7, pp. 1675-1686; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760; McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., DePristo, M.A., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data (2010) Genome Res, 20, pp. 1297-1303; Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Getz, G., Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples (2013) Nat Biotechnol, 31, pp. 213-219; DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., Kernytsky, A.M., A framework for variation discovery and genotyping using next-generation DNA sequencing data (2011) Nat Genet, 43, pp. 491-498; Cordeddu, V., Redeker, B., Stellacci, E., Jongejan, A., Fragale, A., Bradley, T.E., Anselmi, M., Carvalho, D.R., Mutations in ZBTB20 cause Primrose syndrome (2014) Nat Genet, 46, pp. 815-817; Niceta, M., Stellacci, E., Gripp, K.W., Zampino, G., Kousi, M., Anselmi, M., Traversa, A., Bruselles, A., Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a Down syndrome-like Facies (2015) Am J Hum Genet, 96, pp. 816-825; Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Ruden, D.M., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 (2012) Fly (Austin), 6, pp. 80-92; Liu, X., Jian, X., Boerwinkle, E., dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations (2013) Hum Mutat, 34, pp. E2393-E2402; Kortüm, F., Caputo, V., Bauer, C.K., Stella, L., Ciolfi, A., Alawi, M., Bocchinfuso, G., Leuzzi, V., Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome (2015) Nat Genet, 47, pp. 661-667; Flex, E., Niceta, M., Cecchetti, S., Thiffault, I., Au, M.G., Capuano, A., Piermarin, E., Haaxma, C.A., Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy (2016) Am J Hum Genet, 99, pp. 1-12; Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., De Maria, R., Identification and expansion of human colon-cancer-initiating cells (2007) Nature, 445, pp. 111-115; Polonio-Vallon, T., Kirkpatrick, J., Krijgsveld, J., Hofmann, T.G., Src kinase modulates the apoptotic p53 pathway by altering HIPK2 localization (2014) Cell Cycle, 13, pp. 115-125; DeNardo, B.D., Holloway, M.P., Ji, Q., Nguyen, K.T., Cheng, Y., Valentine, M.B., Salomon, A., Altura, R.A., Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IRsignaling pathways in neuroblastoma (2013) PLoS One, 8; Bai, Y., Li, J., Fang, B., Edwards, A., Zhang, G., Bui, M., Eschrich, S., Haura, E.B., Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors (2012) Cancer Res, 72, pp. 2501-2511; Bian, Y., Song, C., Cheng, K., Dong, M., Wang, F., Huang, J., Sun, D., Zou, H., An enzyme assisted RP-RPLC approach for in-depth analysis of human liverphosphoproteome (2014) J Proteomics, 96, pp. 253-262; Wu, X., Tian, L., Li, J., Zhang, Y., Han, V., Li, Y., Xu, X., Zhong, C.Q., Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylationby quantitative phosphoproteomics (2012) Mol Cell Proteomics, 11, pp. 1640-1651; Klammer, M., Kaminski, M., Zedler, A., Oppermann, F., Blencke, S., Marx, S., Müller, S., Schaab, C., Phosphosignature predicts dasatinib response in non-small cell lung cancer (2012) Mol Cell Proteomics, 11, pp. 651-668; Goswami, T., Li, X., Smith, A.M., Luderowski, E.M., Vincent, J.J., Rush, J., Ballif, B.A., Comparative phosphoproteomic analysis of neonatal and adult murine brain (2012) Proteomics, 12, pp. 2185-2189; Yi, T., Zhai, B., Yu, Y., Kiyotsugu, Y., Raschle, T., Etzkorn, M., Seo, H.C., Wagner, G., Quantitative phosphoproteomic analysis reveals system-wide signaling pathwaysdownstream of SDF-1/CXCR4 in breast cancer stem cells (2014) Proc Natl Acad Sci U S A, 111, pp. E2182-E2190; Helou, Y.A., Nguyen, V., Beik, S.P., Salomon, A.R., ERK positive feedback regulates a widespread network of tyrosine phosphorylation sitesacross canonical T cell signaling and actin cytoskeletal proteins in Jurkat T cells (2013) PLoS One, 8; Humphrey, S.J., Yang, G., Yang, P., Fazakerley, D.J., Stöckli, J., Yang, J.Y., James, D.E., Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2 (2013) Cell Metab, 17, pp. 1009-1020; Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., Villén, J., Gygi, S.P., A tissue-specific atlas of mouse protein phosphorylation and expression (2010) Cell, 143, pp. 1174-1189; Stuart, S.A., Houel, S., Lee, T., Wang, N., Old, W.M., Ahn, N.G., A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells (2015) Mol Cell Proteomics, 14, pp. 1599-1615; Mertins, P., Qiao, J.W., Patel, J., Udeshi, N.D., Clauser, K.R., Mani, D.R., Burgess, M.W., Carr, S.A., Integrated proteomic analysis of post-translational modifications by serial enrichment (2013) Nat Methods, 10, pp. 634-637; Oppermann, F.S., Gnad, F., Olsen, J.V., Hornberger, R., Greff, Z., Kéri, G., Mann, M., Daub, H., Large-scale proteomics analysis of the human kinome (2009) Mol Cell Proteomics, 8, pp. 1751-1764

PY - 2017

Y1 - 2017

N2 - HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.

AB - HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.

KW - Cancer stem cells

KW - DNA-damage response

KW - HIPK2

KW - Phosphorylation

KW - caspase

KW - doxorubicin

KW - homeodomain interacting protein kinase 2

KW - mutant protein

KW - phosphotransferase

KW - proline

KW - protein p21

KW - protein p53

KW - serine

KW - threonine

KW - carrier protein

KW - HIPK2 protein, human

KW - Hipk2 protein, mouse

KW - protein serine threonine kinase

KW - antibody specificity

KW - Article

KW - autophosphorylation

KW - cancer inhibition

KW - cell count

KW - cell nucleus

KW - cell viability

KW - cellular distribution

KW - cellular stress response

KW - colorectal cancer

KW - controlled study

KW - enzyme activation

KW - enzyme active site

KW - enzyme activity

KW - enzyme analysis

KW - enzyme localization

KW - enzyme phosphorylation

KW - human

KW - human cell

KW - mutation

KW - protein cleavage

KW - protein expression

KW - radiation response

KW - ultraviolet radiation

KW - animal

KW - Bone Neoplasms

KW - drug effects

KW - enzymology

KW - genetic transfection

KW - genetics

KW - metabolism

KW - mouse

KW - osteosarcoma

KW - phosphorylation

KW - tumor cell line

KW - Animals

KW - Carrier Proteins

KW - Cell Line, Tumor

KW - Doxorubicin

KW - Enzyme Activation

KW - Humans

KW - Mice

KW - Osteosarcoma

KW - Protein-Serine-Threonine Kinases

KW - Transfection

KW - Ultraviolet Rays

M3 - Article

VL - 8

SP - 16744

EP - 16754

JO - Oncotarget

JF - Oncotarget

SN - 1949-2553

IS - 10

ER -