TY - JOUR
T1 - HMGA molecules in neuroblastic tumors
AU - Cerignoli, F.
AU - Ambrosi, C.
AU - Mellone, M.
AU - Massimi, I.
AU - Di Marcotullio, Lucia
AU - Gulino, A.
AU - Giannini, Giuseppe
PY - 2004
Y1 - 2004
N2 - The high mobility group A (HMGA) proteins are thought to work as ancillary transcription factors and to regulate the expression of a growing number of genes through direct binding to DNA or via protein-protein interactions. Both HMGA1 and HMGA2 are important regulators of basic biological processes, including cell growth, differentiation and transformation. Their qualitatively or quantitatively altered expression has been described in a number of human tumors. We studied and review here their expression in neuroblastic tumors. HMGA2 is expressed only in a subset of ex vivo neuroblastoma (NB) tumors and in the embryonic adrenal gland, but it is undetectable in the adult adrenal gland, suggesting that its anomalous expression might be associated with NB tumorigenesis and/or tumor progression. In vitro, its expression is easily detectable in retinoic acid (RA)-resistant cell lines. The exogenous expression of HMGA2 is sufficient to convert RA-sensitive SY5Y NB cells into RA-resistant cells, thus suggesting that HMGA2 might be a relevant player in determining NB cell responses to endogenous or therapeutically important growth inhibitory substances. In contrast, HMGA1 expression is readily detectable in all NB cell lines and tumors, but its expression is consistently higher in less differentiated NBs compared with ganglioneuromas and ganglioneuroblastomas. Interestingly, RA increases HMGA1 expression in RA-resistant NB cells but inhibits it in cells undergoing RA-induced growth inhibition and neuronal differentiation. Our studies indicate that HMGA molecules might be biologically and pathologically relevant factors in neuroblastic tumor development and progression.
AB - The high mobility group A (HMGA) proteins are thought to work as ancillary transcription factors and to regulate the expression of a growing number of genes through direct binding to DNA or via protein-protein interactions. Both HMGA1 and HMGA2 are important regulators of basic biological processes, including cell growth, differentiation and transformation. Their qualitatively or quantitatively altered expression has been described in a number of human tumors. We studied and review here their expression in neuroblastic tumors. HMGA2 is expressed only in a subset of ex vivo neuroblastoma (NB) tumors and in the embryonic adrenal gland, but it is undetectable in the adult adrenal gland, suggesting that its anomalous expression might be associated with NB tumorigenesis and/or tumor progression. In vitro, its expression is easily detectable in retinoic acid (RA)-resistant cell lines. The exogenous expression of HMGA2 is sufficient to convert RA-sensitive SY5Y NB cells into RA-resistant cells, thus suggesting that HMGA2 might be a relevant player in determining NB cell responses to endogenous or therapeutically important growth inhibitory substances. In contrast, HMGA1 expression is readily detectable in all NB cell lines and tumors, but its expression is consistently higher in less differentiated NBs compared with ganglioneuromas and ganglioneuroblastomas. Interestingly, RA increases HMGA1 expression in RA-resistant NB cells but inhibits it in cells undergoing RA-induced growth inhibition and neuronal differentiation. Our studies indicate that HMGA molecules might be biologically and pathologically relevant factors in neuroblastic tumor development and progression.
KW - HMGA
KW - Neuroblastic tumors
KW - Retinoic acid
UR - http://www.scopus.com/inward/record.url?scp=14944361858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14944361858&partnerID=8YFLogxK
U2 - 10.1196/annals.1322.013
DO - 10.1196/annals.1322.013
M3 - Article
C2 - 15650238
AN - SCOPUS:14944361858
VL - 1028
SP - 122
EP - 132
JO - Annals of the New York Academy of Sciences
JF - Annals of the New York Academy of Sciences
SN - 0077-8923
ER -