Human NK cells: surface receptors, inhibitory checkpoints, and translational applications

Research output: Contribution to journalReview article

Abstract

NK cells play important roles in innate defenses against viruses and in the control of tumor growth and metastasis. The regulation/induction of NK cell function is mediated by an array of activating or inhibitory surface receptors. In humans, major activating receptors involved in target cell killing are the natural cytotoxicity receptors (NCRs) and NKG2D. Activating receptors recognize ligands that are overexpressed or expressed de novo upon cell stress, viral infection, or tumor transformation. The HLA-class I-specific inhibitory receptors, including KIRs recognizing HLA-class I allotypic determinants and CD94/NKG2A recognizing the class-Ib HLA-E, constitute a fail-safe mechanism to avoid unwanted NK-mediated damage to healthy cells. Other receptors such as PD-1, primarily expressed by activated T lymphocytes, are important inhibitory checkpoints of immune responses that ensure T-cell tolerance. PD-1 also may be expressed by NK cells in cancer patients. Since PD-1 ligand (PD-L1) may be expressed by different tumors, PD-1/PD-L1 interactions inactivate both T and NK cells. Thus, the reliable evaluation of PD-L1 expression in tumors has become a major issue to select patients who may benefit from therapy with mAbs disrupting PD-1/PD-L1 interactions. Recently, NKG2A was revealed to be an important checkpoint controlling both NK and T-cell activation. Since most tumors express HLA-E, mAbs targeting NKG2A has been used alone or in combination with other therapeutic mAbs targeting PD-1 or tumor antigens (e.g., EGFR), with encouraging results. The translational value of NK cells and their receptors is evidenced by the extraordinary therapeutic success of haploidentical HSCT to cure otherwise fatal high-risk leukemias.

Original languageEnglish
Pages (from-to)430-441
Number of pages12
JournalCellular and Molecular Immunology
Volume16
Issue number5
DOIs
Publication statusPublished - May 16 2019

Fingerprint

Natural Killer Cell Receptors
Cell Surface Receptors
Natural Killer Cells
T-Lymphocytes
Neoplasms
NK Cell Lectin-Like Receptor Subfamily K
KIR Receptors
Ligands
Neoplasm Antigens
Virus Diseases
Leukemia
Therapeutics
Neoplasm Metastasis
Viruses
Growth

Cite this

Human NK cells : surface receptors, inhibitory checkpoints, and translational applications. / Sivori, Simona; Vacca, Paola; Del Zotto, Genny; Munari, Enrico; Mingari, Maria Cristina; Moretta, Lorenzo.

In: Cellular and Molecular Immunology, Vol. 16, No. 5, 16.05.2019, p. 430-441.

Research output: Contribution to journalReview article

@article{6923e6a48b41428092bbd79cb462725f,
title = "Human NK cells: surface receptors, inhibitory checkpoints, and translational applications",
abstract = "NK cells play important roles in innate defenses against viruses and in the control of tumor growth and metastasis. The regulation/induction of NK cell function is mediated by an array of activating or inhibitory surface receptors. In humans, major activating receptors involved in target cell killing are the natural cytotoxicity receptors (NCRs) and NKG2D. Activating receptors recognize ligands that are overexpressed or expressed de novo upon cell stress, viral infection, or tumor transformation. The HLA-class I-specific inhibitory receptors, including KIRs recognizing HLA-class I allotypic determinants and CD94/NKG2A recognizing the class-Ib HLA-E, constitute a fail-safe mechanism to avoid unwanted NK-mediated damage to healthy cells. Other receptors such as PD-1, primarily expressed by activated T lymphocytes, are important inhibitory checkpoints of immune responses that ensure T-cell tolerance. PD-1 also may be expressed by NK cells in cancer patients. Since PD-1 ligand (PD-L1) may be expressed by different tumors, PD-1/PD-L1 interactions inactivate both T and NK cells. Thus, the reliable evaluation of PD-L1 expression in tumors has become a major issue to select patients who may benefit from therapy with mAbs disrupting PD-1/PD-L1 interactions. Recently, NKG2A was revealed to be an important checkpoint controlling both NK and T-cell activation. Since most tumors express HLA-E, mAbs targeting NKG2A has been used alone or in combination with other therapeutic mAbs targeting PD-1 or tumor antigens (e.g., EGFR), with encouraging results. The translational value of NK cells and their receptors is evidenced by the extraordinary therapeutic success of haploidentical HSCT to cure otherwise fatal high-risk leukemias.",
author = "Simona Sivori and Paola Vacca and {Del Zotto}, Genny and Enrico Munari and Mingari, {Maria Cristina} and Lorenzo Moretta",
year = "2019",
month = "5",
day = "16",
doi = "10.1038/s41423-019-0206-4",
language = "English",
volume = "16",
pages = "430--441",
journal = "Cellular and Molecular Immunology",
issn = "1672-7681",
publisher = "Nature Publishing Group",
number = "5",

}

TY - JOUR

T1 - Human NK cells

T2 - surface receptors, inhibitory checkpoints, and translational applications

AU - Sivori, Simona

AU - Vacca, Paola

AU - Del Zotto, Genny

AU - Munari, Enrico

AU - Mingari, Maria Cristina

AU - Moretta, Lorenzo

PY - 2019/5/16

Y1 - 2019/5/16

N2 - NK cells play important roles in innate defenses against viruses and in the control of tumor growth and metastasis. The regulation/induction of NK cell function is mediated by an array of activating or inhibitory surface receptors. In humans, major activating receptors involved in target cell killing are the natural cytotoxicity receptors (NCRs) and NKG2D. Activating receptors recognize ligands that are overexpressed or expressed de novo upon cell stress, viral infection, or tumor transformation. The HLA-class I-specific inhibitory receptors, including KIRs recognizing HLA-class I allotypic determinants and CD94/NKG2A recognizing the class-Ib HLA-E, constitute a fail-safe mechanism to avoid unwanted NK-mediated damage to healthy cells. Other receptors such as PD-1, primarily expressed by activated T lymphocytes, are important inhibitory checkpoints of immune responses that ensure T-cell tolerance. PD-1 also may be expressed by NK cells in cancer patients. Since PD-1 ligand (PD-L1) may be expressed by different tumors, PD-1/PD-L1 interactions inactivate both T and NK cells. Thus, the reliable evaluation of PD-L1 expression in tumors has become a major issue to select patients who may benefit from therapy with mAbs disrupting PD-1/PD-L1 interactions. Recently, NKG2A was revealed to be an important checkpoint controlling both NK and T-cell activation. Since most tumors express HLA-E, mAbs targeting NKG2A has been used alone or in combination with other therapeutic mAbs targeting PD-1 or tumor antigens (e.g., EGFR), with encouraging results. The translational value of NK cells and their receptors is evidenced by the extraordinary therapeutic success of haploidentical HSCT to cure otherwise fatal high-risk leukemias.

AB - NK cells play important roles in innate defenses against viruses and in the control of tumor growth and metastasis. The regulation/induction of NK cell function is mediated by an array of activating or inhibitory surface receptors. In humans, major activating receptors involved in target cell killing are the natural cytotoxicity receptors (NCRs) and NKG2D. Activating receptors recognize ligands that are overexpressed or expressed de novo upon cell stress, viral infection, or tumor transformation. The HLA-class I-specific inhibitory receptors, including KIRs recognizing HLA-class I allotypic determinants and CD94/NKG2A recognizing the class-Ib HLA-E, constitute a fail-safe mechanism to avoid unwanted NK-mediated damage to healthy cells. Other receptors such as PD-1, primarily expressed by activated T lymphocytes, are important inhibitory checkpoints of immune responses that ensure T-cell tolerance. PD-1 also may be expressed by NK cells in cancer patients. Since PD-1 ligand (PD-L1) may be expressed by different tumors, PD-1/PD-L1 interactions inactivate both T and NK cells. Thus, the reliable evaluation of PD-L1 expression in tumors has become a major issue to select patients who may benefit from therapy with mAbs disrupting PD-1/PD-L1 interactions. Recently, NKG2A was revealed to be an important checkpoint controlling both NK and T-cell activation. Since most tumors express HLA-E, mAbs targeting NKG2A has been used alone or in combination with other therapeutic mAbs targeting PD-1 or tumor antigens (e.g., EGFR), with encouraging results. The translational value of NK cells and their receptors is evidenced by the extraordinary therapeutic success of haploidentical HSCT to cure otherwise fatal high-risk leukemias.

U2 - 10.1038/s41423-019-0206-4

DO - 10.1038/s41423-019-0206-4

M3 - Review article

C2 - 30778167

VL - 16

SP - 430

EP - 441

JO - Cellular and Molecular Immunology

JF - Cellular and Molecular Immunology

SN - 1672-7681

IS - 5

ER -