Human serum albumin: From bench to bedside

Gabriella Fanali, Alessandra Di Masi, Viviana Trezza, Maria Marino, Mauro Fasano, Paolo Ascenzi

Research output: Contribution to journalArticlepeer-review


Human serum albumin (HSA), the most abundant protein in plasma, is a monomeric multi-domain macromolecule, representing the main determinant of plasma oncotic pressure and the main modulator of fluid distribution between body compartments. HSA displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds. Indeed, HSA represents the main carrier for fatty acids, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays (pseudo-)enzymatic properties. HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control. Moreover, HSA is widely used clinically to treat several diseases, including hypovolemia, shock, burns, surgical blood loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis, acute liver failure, chronic liver disease, nutrition support, resuscitation, and hypoalbuminemia. Recently, biotechnological applications of HSA, including implantable biomaterials, surgical adhesives and sealants, biochromatography, ligand trapping, and fusion proteins, have been reported. Here, genetic, biochemical, biomedical, and biotechnological aspects of HSA are reviewed.

Original languageEnglish
Pages (from-to)209-290
Number of pages82
JournalMolecular Aspects of Medicine
Issue number3
Publication statusPublished - Jun 2012


  • (Pseudo-)enzymatic properties
  • Allostery
  • Biomedical aspects
  • Biotechnological applications
  • Chemical modifications
  • Genetic variants
  • Human serum albumin
  • Human serum heme-albumin
  • Ligand binding properties
  • Recombinant human serum albumin
  • Structure

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Molecular Medicine
  • Clinical Biochemistry
  • Medicine(all)


Dive into the research topics of 'Human serum albumin: From bench to bedside'. Together they form a unique fingerprint.

Cite this