Identification of GAD65 AA 114-122 reactive’memory-like’ NK cells in newly diagnosed Type 1 diabetic patients by HLA-class I pentamers

Valentina Perri, Elena Gianchecchi, Loredana Cifaldi, Marsha Pellegrino, Ezio Giorda, Marco Andreani, Marco Cappa, Alessandra Fierabracci

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Type 1 diabetes is an autoimmune disease, in which pancreatic β cells are destroyed by autoreactive T cells in genetically predisposed individuals. Serum beta cell autoantibody specificities have represented the mainstay for classifying diabetes as autoimmune-mediated and for stratifying risk in first-degree relatives. In recent years, approaches were attempted to solve the difficult issue of detecting rare antigen-specific autoreactive T cells and their significance to etiopathogenesis such as the use of the MHC multimer technology. This tool allowed the specific detection of increased percentages of GAD65 autoreactive T cells by means of HLA A*02:01 GAD65 AA 114–122 pentamers in newly diagnosed diabetics. Here we provide evidence that GAD65 AA 114–122 pentamers can depict a GAD65 AA114-122 peptide expandable population of functionally and phenotypically skewed, preliminary characterized CD3-CD8dullCD56+ ‘memory-like’ NK cells in PBMC of newly diagnosed diabetics. Our data suggest that the NK cell subset could bind the HLA class I GAD65 AA 114–122 pentamer through ILT2 inhibitory receptor. CD107a expression revealed increased degranulation of CD3-CD8dullCD56+ NK cells in GAD65 AA 114–122 and FLU peptide expanded peripheral blood mononuclear cells of diabetics following GAD65 AA 114–122 peptide HLA A*02:01 presentation in respect to the unpulsed condition. CD107a expression was enriched in ILT2 positive NK cells. As opposite to basal conditions where similar percentages of CD3-CD56+ILT2+ cells were detected in diabetics and controls, CD3-CD56+CD107a+ and CD3-CD56+ILT2+CD107a+ cells were significantly increased in T1D PBMC either GAD65 AA 114–122 or FLU peptides stimulated after co-culture with GAD65 AA 114–122 pulsed APCs. As control, healthy donor NK cells showed similar degranulation against both GAD65 AA 114–122 pulsed and unpulsed APCs. The pathogenetic significance of the CD3-CD8dullCD56+ ‘memory-like NK cell subset’ with increased response upon secondary challenge in diabetics remains to be elucidated.

Original languageEnglish
Article numberY
JournalPLoS One
Volume12
Issue number12
DOIs
Publication statusPublished - Dec 1 2017

Fingerprint

natural killer cells
Natural Killer Cells
T-cells
Peptides
HLA-A Antigens
Medical problems
mononuclear leukocytes
peptides
T-lymphocytes
T-Lymphocytes
Type 1 Diabetes Mellitus
Data storage equipment
cells
Autoantibodies
autoantibodies
Blood
insulin-dependent diabetes mellitus
autoimmune diseases
coculture
Coculture Techniques

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

@article{238d259001534d0d8dc9e07fd708361a,
title = "Identification of GAD65 AA 114-122 reactive’memory-like’ NK cells in newly diagnosed Type 1 diabetic patients by HLA-class I pentamers",
abstract = "Type 1 diabetes is an autoimmune disease, in which pancreatic β cells are destroyed by autoreactive T cells in genetically predisposed individuals. Serum beta cell autoantibody specificities have represented the mainstay for classifying diabetes as autoimmune-mediated and for stratifying risk in first-degree relatives. In recent years, approaches were attempted to solve the difficult issue of detecting rare antigen-specific autoreactive T cells and their significance to etiopathogenesis such as the use of the MHC multimer technology. This tool allowed the specific detection of increased percentages of GAD65 autoreactive T cells by means of HLA A*02:01 GAD65 AA 114–122 pentamers in newly diagnosed diabetics. Here we provide evidence that GAD65 AA 114–122 pentamers can depict a GAD65 AA114-122 peptide expandable population of functionally and phenotypically skewed, preliminary characterized CD3-CD8dullCD56+ ‘memory-like’ NK cells in PBMC of newly diagnosed diabetics. Our data suggest that the NK cell subset could bind the HLA class I GAD65 AA 114–122 pentamer through ILT2 inhibitory receptor. CD107a expression revealed increased degranulation of CD3-CD8dullCD56+ NK cells in GAD65 AA 114–122 and FLU peptide expanded peripheral blood mononuclear cells of diabetics following GAD65 AA 114–122 peptide HLA A*02:01 presentation in respect to the unpulsed condition. CD107a expression was enriched in ILT2 positive NK cells. As opposite to basal conditions where similar percentages of CD3-CD56+ILT2+ cells were detected in diabetics and controls, CD3-CD56+CD107a+ and CD3-CD56+ILT2+CD107a+ cells were significantly increased in T1D PBMC either GAD65 AA 114–122 or FLU peptides stimulated after co-culture with GAD65 AA 114–122 pulsed APCs. As control, healthy donor NK cells showed similar degranulation against both GAD65 AA 114–122 pulsed and unpulsed APCs. The pathogenetic significance of the CD3-CD8dullCD56+ ‘memory-like NK cell subset’ with increased response upon secondary challenge in diabetics remains to be elucidated.",
author = "Valentina Perri and Elena Gianchecchi and Loredana Cifaldi and Marsha Pellegrino and Ezio Giorda and Marco Andreani and Marco Cappa and Alessandra Fierabracci",
year = "2017",
month = "12",
day = "1",
doi = "10.1371/journal.pone.0189615",
language = "English",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Identification of GAD65 AA 114-122 reactive’memory-like’ NK cells in newly diagnosed Type 1 diabetic patients by HLA-class I pentamers

AU - Perri, Valentina

AU - Gianchecchi, Elena

AU - Cifaldi, Loredana

AU - Pellegrino, Marsha

AU - Giorda, Ezio

AU - Andreani, Marco

AU - Cappa, Marco

AU - Fierabracci, Alessandra

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Type 1 diabetes is an autoimmune disease, in which pancreatic β cells are destroyed by autoreactive T cells in genetically predisposed individuals. Serum beta cell autoantibody specificities have represented the mainstay for classifying diabetes as autoimmune-mediated and for stratifying risk in first-degree relatives. In recent years, approaches were attempted to solve the difficult issue of detecting rare antigen-specific autoreactive T cells and their significance to etiopathogenesis such as the use of the MHC multimer technology. This tool allowed the specific detection of increased percentages of GAD65 autoreactive T cells by means of HLA A*02:01 GAD65 AA 114–122 pentamers in newly diagnosed diabetics. Here we provide evidence that GAD65 AA 114–122 pentamers can depict a GAD65 AA114-122 peptide expandable population of functionally and phenotypically skewed, preliminary characterized CD3-CD8dullCD56+ ‘memory-like’ NK cells in PBMC of newly diagnosed diabetics. Our data suggest that the NK cell subset could bind the HLA class I GAD65 AA 114–122 pentamer through ILT2 inhibitory receptor. CD107a expression revealed increased degranulation of CD3-CD8dullCD56+ NK cells in GAD65 AA 114–122 and FLU peptide expanded peripheral blood mononuclear cells of diabetics following GAD65 AA 114–122 peptide HLA A*02:01 presentation in respect to the unpulsed condition. CD107a expression was enriched in ILT2 positive NK cells. As opposite to basal conditions where similar percentages of CD3-CD56+ILT2+ cells were detected in diabetics and controls, CD3-CD56+CD107a+ and CD3-CD56+ILT2+CD107a+ cells were significantly increased in T1D PBMC either GAD65 AA 114–122 or FLU peptides stimulated after co-culture with GAD65 AA 114–122 pulsed APCs. As control, healthy donor NK cells showed similar degranulation against both GAD65 AA 114–122 pulsed and unpulsed APCs. The pathogenetic significance of the CD3-CD8dullCD56+ ‘memory-like NK cell subset’ with increased response upon secondary challenge in diabetics remains to be elucidated.

AB - Type 1 diabetes is an autoimmune disease, in which pancreatic β cells are destroyed by autoreactive T cells in genetically predisposed individuals. Serum beta cell autoantibody specificities have represented the mainstay for classifying diabetes as autoimmune-mediated and for stratifying risk in first-degree relatives. In recent years, approaches were attempted to solve the difficult issue of detecting rare antigen-specific autoreactive T cells and their significance to etiopathogenesis such as the use of the MHC multimer technology. This tool allowed the specific detection of increased percentages of GAD65 autoreactive T cells by means of HLA A*02:01 GAD65 AA 114–122 pentamers in newly diagnosed diabetics. Here we provide evidence that GAD65 AA 114–122 pentamers can depict a GAD65 AA114-122 peptide expandable population of functionally and phenotypically skewed, preliminary characterized CD3-CD8dullCD56+ ‘memory-like’ NK cells in PBMC of newly diagnosed diabetics. Our data suggest that the NK cell subset could bind the HLA class I GAD65 AA 114–122 pentamer through ILT2 inhibitory receptor. CD107a expression revealed increased degranulation of CD3-CD8dullCD56+ NK cells in GAD65 AA 114–122 and FLU peptide expanded peripheral blood mononuclear cells of diabetics following GAD65 AA 114–122 peptide HLA A*02:01 presentation in respect to the unpulsed condition. CD107a expression was enriched in ILT2 positive NK cells. As opposite to basal conditions where similar percentages of CD3-CD56+ILT2+ cells were detected in diabetics and controls, CD3-CD56+CD107a+ and CD3-CD56+ILT2+CD107a+ cells were significantly increased in T1D PBMC either GAD65 AA 114–122 or FLU peptides stimulated after co-culture with GAD65 AA 114–122 pulsed APCs. As control, healthy donor NK cells showed similar degranulation against both GAD65 AA 114–122 pulsed and unpulsed APCs. The pathogenetic significance of the CD3-CD8dullCD56+ ‘memory-like NK cell subset’ with increased response upon secondary challenge in diabetics remains to be elucidated.

UR - http://www.scopus.com/inward/record.url?scp=85038236858&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038236858&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0189615

DO - 10.1371/journal.pone.0189615

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - Y

ER -