Identification of Sumoylation Sites in CCDC6, the First Identified RET Partner Gene in Papillary Thyroid Carcinoma, Uncovers a Mode of Regulating CCDC6 Function on CREB1 Transcriptional Activity

Chiara Luise, Francesco Merolla, Vincenza Leone, Simona Paladino, Daniela Sarnataro, Alfredo Fusco, Angela Celetti

Research output: Contribution to journalArticle

Abstract

CCDC6 was originally identified in chimeric genes as caused by chromosomal translocation involving the RET protooncogene in some thyroid tumors. Recognised as a 65 kDa pro-apoptotic phosphoprotein, CCDC6 has been enrolled as an ATM substrate that contribute to protect genome integrity by modulating PP4c activity in response to genotoxic stress. Recently, CCDC6 has been identified as a repressor of CREB1-dependent transcription. Sumoylation has emerged as an important mechanism in transcriptional control. Here, we report the identification and characterization of three sites of sumoylation in CCDC6 (K74, K266 and K424) which are highly conserved in vertebrates. We demonstrate that the post-translational modifications by SUMO2 constrain most of the CCDC6 protein in the cytosol and affect its functional interaction with CREB1 with a decrease of CCDC6 repressive function on CREB1 transcriptional activity. Indeed, the impairment of functional outcome of sumoylated CCDC6 is obtained knocking down all three the sumoylation sites. Interestingly, in thyroid cells the SUMO2-mediated CCDC6 post-translational modifications are induced by Forskolin, a cAMP analog. Signal transduction via the cAMP pathway is known to be ubiquitous and represents a major line of communication between many organisms and their environment. We believe that CCDC6 could be an important player in the dynamics of cAMP signaling by fine regulating CREB1 transcriptional activity in normal and transformed thyroid cells.

Original languageEnglish
Article numbere49298
JournalPLoS One
Volume7
Issue number11
DOIs
Publication statusPublished - Nov 7 2012

Fingerprint

Sumoylation
post-translational modification
carcinoma
Thyroid Gland
Genes
Post Translational Protein Processing
proto-oncogenes
Signal transduction
phosphoproteins
forskolin
Phosphoproteins
Automatic teller machines
Colforsin
Transcription
cytosol
signal transduction
Tumors
stress response
Genetic Translocation
genes

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Identification of Sumoylation Sites in CCDC6, the First Identified RET Partner Gene in Papillary Thyroid Carcinoma, Uncovers a Mode of Regulating CCDC6 Function on CREB1 Transcriptional Activity. / Luise, Chiara; Merolla, Francesco; Leone, Vincenza; Paladino, Simona; Sarnataro, Daniela; Fusco, Alfredo; Celetti, Angela.

In: PLoS One, Vol. 7, No. 11, e49298, 07.11.2012.

Research output: Contribution to journalArticle

Luise, Chiara ; Merolla, Francesco ; Leone, Vincenza ; Paladino, Simona ; Sarnataro, Daniela ; Fusco, Alfredo ; Celetti, Angela. / Identification of Sumoylation Sites in CCDC6, the First Identified RET Partner Gene in Papillary Thyroid Carcinoma, Uncovers a Mode of Regulating CCDC6 Function on CREB1 Transcriptional Activity. In: PLoS One. 2012 ; Vol. 7, No. 11.
@article{73538394c7594e718379970b5b147b18,
title = "Identification of Sumoylation Sites in CCDC6, the First Identified RET Partner Gene in Papillary Thyroid Carcinoma, Uncovers a Mode of Regulating CCDC6 Function on CREB1 Transcriptional Activity",
abstract = "CCDC6 was originally identified in chimeric genes as caused by chromosomal translocation involving the RET protooncogene in some thyroid tumors. Recognised as a 65 kDa pro-apoptotic phosphoprotein, CCDC6 has been enrolled as an ATM substrate that contribute to protect genome integrity by modulating PP4c activity in response to genotoxic stress. Recently, CCDC6 has been identified as a repressor of CREB1-dependent transcription. Sumoylation has emerged as an important mechanism in transcriptional control. Here, we report the identification and characterization of three sites of sumoylation in CCDC6 (K74, K266 and K424) which are highly conserved in vertebrates. We demonstrate that the post-translational modifications by SUMO2 constrain most of the CCDC6 protein in the cytosol and affect its functional interaction with CREB1 with a decrease of CCDC6 repressive function on CREB1 transcriptional activity. Indeed, the impairment of functional outcome of sumoylated CCDC6 is obtained knocking down all three the sumoylation sites. Interestingly, in thyroid cells the SUMO2-mediated CCDC6 post-translational modifications are induced by Forskolin, a cAMP analog. Signal transduction via the cAMP pathway is known to be ubiquitous and represents a major line of communication between many organisms and their environment. We believe that CCDC6 could be an important player in the dynamics of cAMP signaling by fine regulating CREB1 transcriptional activity in normal and transformed thyroid cells.",
author = "Chiara Luise and Francesco Merolla and Vincenza Leone and Simona Paladino and Daniela Sarnataro and Alfredo Fusco and Angela Celetti",
year = "2012",
month = "11",
day = "7",
doi = "10.1371/journal.pone.0049298",
language = "English",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Identification of Sumoylation Sites in CCDC6, the First Identified RET Partner Gene in Papillary Thyroid Carcinoma, Uncovers a Mode of Regulating CCDC6 Function on CREB1 Transcriptional Activity

AU - Luise, Chiara

AU - Merolla, Francesco

AU - Leone, Vincenza

AU - Paladino, Simona

AU - Sarnataro, Daniela

AU - Fusco, Alfredo

AU - Celetti, Angela

PY - 2012/11/7

Y1 - 2012/11/7

N2 - CCDC6 was originally identified in chimeric genes as caused by chromosomal translocation involving the RET protooncogene in some thyroid tumors. Recognised as a 65 kDa pro-apoptotic phosphoprotein, CCDC6 has been enrolled as an ATM substrate that contribute to protect genome integrity by modulating PP4c activity in response to genotoxic stress. Recently, CCDC6 has been identified as a repressor of CREB1-dependent transcription. Sumoylation has emerged as an important mechanism in transcriptional control. Here, we report the identification and characterization of three sites of sumoylation in CCDC6 (K74, K266 and K424) which are highly conserved in vertebrates. We demonstrate that the post-translational modifications by SUMO2 constrain most of the CCDC6 protein in the cytosol and affect its functional interaction with CREB1 with a decrease of CCDC6 repressive function on CREB1 transcriptional activity. Indeed, the impairment of functional outcome of sumoylated CCDC6 is obtained knocking down all three the sumoylation sites. Interestingly, in thyroid cells the SUMO2-mediated CCDC6 post-translational modifications are induced by Forskolin, a cAMP analog. Signal transduction via the cAMP pathway is known to be ubiquitous and represents a major line of communication between many organisms and their environment. We believe that CCDC6 could be an important player in the dynamics of cAMP signaling by fine regulating CREB1 transcriptional activity in normal and transformed thyroid cells.

AB - CCDC6 was originally identified in chimeric genes as caused by chromosomal translocation involving the RET protooncogene in some thyroid tumors. Recognised as a 65 kDa pro-apoptotic phosphoprotein, CCDC6 has been enrolled as an ATM substrate that contribute to protect genome integrity by modulating PP4c activity in response to genotoxic stress. Recently, CCDC6 has been identified as a repressor of CREB1-dependent transcription. Sumoylation has emerged as an important mechanism in transcriptional control. Here, we report the identification and characterization of three sites of sumoylation in CCDC6 (K74, K266 and K424) which are highly conserved in vertebrates. We demonstrate that the post-translational modifications by SUMO2 constrain most of the CCDC6 protein in the cytosol and affect its functional interaction with CREB1 with a decrease of CCDC6 repressive function on CREB1 transcriptional activity. Indeed, the impairment of functional outcome of sumoylated CCDC6 is obtained knocking down all three the sumoylation sites. Interestingly, in thyroid cells the SUMO2-mediated CCDC6 post-translational modifications are induced by Forskolin, a cAMP analog. Signal transduction via the cAMP pathway is known to be ubiquitous and represents a major line of communication between many organisms and their environment. We believe that CCDC6 could be an important player in the dynamics of cAMP signaling by fine regulating CREB1 transcriptional activity in normal and transformed thyroid cells.

UR - http://www.scopus.com/inward/record.url?scp=84868684272&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84868684272&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0049298

DO - 10.1371/journal.pone.0049298

M3 - Article

C2 - 23145146

AN - SCOPUS:84868684272

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 11

M1 - e49298

ER -