Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial-Stromal Tumors by Targeting PDGFR-beta.

Elena Jachetti, Alice Rigoni, Lucia Bongiovanni, Ivano Arioli, Laura Botti, Mariella Parenza, Valeria Cancila, Claudia Chiodoni, Fabrizio Festinese, Matteo Bellone, Regina Tardanico, Claudio Tripodo, Mario P. Colombo

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Prostate cancer is a leading cause of cancer-related death in males worldwide. Indeed, advanced and metastatic disease characterized by androgen resistance and often associated with neuroendocrine (NE) differentiation remains incurable. Using the spontaneous prostate cancer TRAMP model, we have shown that mast cells (MCs) support in vivo the growth of prostate adenocarcinoma, whereas their genetic or pharmacologic targeting favors prostate NE cancer arousal. Aiming at simultaneously targeting prostate NE tumor cells and MCs, both expressing the cKit tyrosine kinase receptor, we have tested the therapeutic effect of imatinib in TRAMP mice. Imatinib-treated TRAMP mice experience a partial benefit against prostate adenocarcinoma, because of inhibition of supportive MCs. However, they show an unexpected outgrowth of prostate NE tumors, likely because of defective signaling pathway downstream of cKit receptor. Also unexpected but very effective was the inhibition of epithelial-stromal tumors of the seminal vesicles achieved by imatinib treatment. These tumors normally arise in the seminal vesicles of TRAMP mice, independently of the degree of prostatic glandular lesions, and resemble phyllodes tumors found in human prostate and seminal vesicles, and in breast. In both mice and in patients, these tumors are negative for cKit but express PDGFR-beta, another tyrosine kinase receptor specifically inhibited by imatinib. Our results imply a possible detrimental effect of imatinib in prostate cancer patients but suggest a promising therapeutic application of imatinib in the treatment of recurrent or metastatic phyllodes tumors. Mol Cancer Ther; 16(2); 365-75. (c)2016 AACR.
Original languageUndefined/Unknown
Pages (from-to)365-375
Number of pages11
JournalMolecular Cancer Therapeutics
Volume16
Issue number2
DOIs
Publication statusPublished - Feb 1 2017

Cite this

Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial-Stromal Tumors by Targeting PDGFR-beta. / Jachetti, Elena; Rigoni, Alice; Bongiovanni, Lucia; Arioli, Ivano; Botti, Laura; Parenza, Mariella; Cancila, Valeria; Chiodoni, Claudia; Festinese, Fabrizio; Bellone, Matteo; Tardanico, Regina; Tripodo, Claudio; Colombo, Mario P.

In: Molecular Cancer Therapeutics, Vol. 16, No. 2, 01.02.2017, p. 365-375.

Research output: Contribution to journalArticle

Jachetti, Elena ; Rigoni, Alice ; Bongiovanni, Lucia ; Arioli, Ivano ; Botti, Laura ; Parenza, Mariella ; Cancila, Valeria ; Chiodoni, Claudia ; Festinese, Fabrizio ; Bellone, Matteo ; Tardanico, Regina ; Tripodo, Claudio ; Colombo, Mario P. / Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial-Stromal Tumors by Targeting PDGFR-beta. In: Molecular Cancer Therapeutics. 2017 ; Vol. 16, No. 2. pp. 365-375.
@article{7ef6378f2ad747a1a1a0fdb7a72b1975,
title = "Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial-Stromal Tumors by Targeting PDGFR-beta.",
abstract = "Prostate cancer is a leading cause of cancer-related death in males worldwide. Indeed, advanced and metastatic disease characterized by androgen resistance and often associated with neuroendocrine (NE) differentiation remains incurable. Using the spontaneous prostate cancer TRAMP model, we have shown that mast cells (MCs) support in vivo the growth of prostate adenocarcinoma, whereas their genetic or pharmacologic targeting favors prostate NE cancer arousal. Aiming at simultaneously targeting prostate NE tumor cells and MCs, both expressing the cKit tyrosine kinase receptor, we have tested the therapeutic effect of imatinib in TRAMP mice. Imatinib-treated TRAMP mice experience a partial benefit against prostate adenocarcinoma, because of inhibition of supportive MCs. However, they show an unexpected outgrowth of prostate NE tumors, likely because of defective signaling pathway downstream of cKit receptor. Also unexpected but very effective was the inhibition of epithelial-stromal tumors of the seminal vesicles achieved by imatinib treatment. These tumors normally arise in the seminal vesicles of TRAMP mice, independently of the degree of prostatic glandular lesions, and resemble phyllodes tumors found in human prostate and seminal vesicles, and in breast. In both mice and in patients, these tumors are negative for cKit but express PDGFR-beta, another tyrosine kinase receptor specifically inhibited by imatinib. Our results imply a possible detrimental effect of imatinib in prostate cancer patients but suggest a promising therapeutic application of imatinib in the treatment of recurrent or metastatic phyllodes tumors. Mol Cancer Ther; 16(2); 365-75. (c)2016 AACR.",
author = "Elena Jachetti and Alice Rigoni and Lucia Bongiovanni and Ivano Arioli and Laura Botti and Mariella Parenza and Valeria Cancila and Claudia Chiodoni and Fabrizio Festinese and Matteo Bellone and Regina Tardanico and Claudio Tripodo and Colombo, {Mario P.}",
year = "2017",
month = "2",
day = "1",
doi = "10.1158/1535-7163.MCT-16-0466",
language = "Non definita",
volume = "16",
pages = "365--375",
journal = "Molecular Cancer Therapeutics",
issn = "1535-7163",
publisher = "American Association for Cancer Research Inc.",
number = "2",

}

TY - JOUR

T1 - Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial-Stromal Tumors by Targeting PDGFR-beta.

AU - Jachetti, Elena

AU - Rigoni, Alice

AU - Bongiovanni, Lucia

AU - Arioli, Ivano

AU - Botti, Laura

AU - Parenza, Mariella

AU - Cancila, Valeria

AU - Chiodoni, Claudia

AU - Festinese, Fabrizio

AU - Bellone, Matteo

AU - Tardanico, Regina

AU - Tripodo, Claudio

AU - Colombo, Mario P.

PY - 2017/2/1

Y1 - 2017/2/1

N2 - Prostate cancer is a leading cause of cancer-related death in males worldwide. Indeed, advanced and metastatic disease characterized by androgen resistance and often associated with neuroendocrine (NE) differentiation remains incurable. Using the spontaneous prostate cancer TRAMP model, we have shown that mast cells (MCs) support in vivo the growth of prostate adenocarcinoma, whereas their genetic or pharmacologic targeting favors prostate NE cancer arousal. Aiming at simultaneously targeting prostate NE tumor cells and MCs, both expressing the cKit tyrosine kinase receptor, we have tested the therapeutic effect of imatinib in TRAMP mice. Imatinib-treated TRAMP mice experience a partial benefit against prostate adenocarcinoma, because of inhibition of supportive MCs. However, they show an unexpected outgrowth of prostate NE tumors, likely because of defective signaling pathway downstream of cKit receptor. Also unexpected but very effective was the inhibition of epithelial-stromal tumors of the seminal vesicles achieved by imatinib treatment. These tumors normally arise in the seminal vesicles of TRAMP mice, independently of the degree of prostatic glandular lesions, and resemble phyllodes tumors found in human prostate and seminal vesicles, and in breast. In both mice and in patients, these tumors are negative for cKit but express PDGFR-beta, another tyrosine kinase receptor specifically inhibited by imatinib. Our results imply a possible detrimental effect of imatinib in prostate cancer patients but suggest a promising therapeutic application of imatinib in the treatment of recurrent or metastatic phyllodes tumors. Mol Cancer Ther; 16(2); 365-75. (c)2016 AACR.

AB - Prostate cancer is a leading cause of cancer-related death in males worldwide. Indeed, advanced and metastatic disease characterized by androgen resistance and often associated with neuroendocrine (NE) differentiation remains incurable. Using the spontaneous prostate cancer TRAMP model, we have shown that mast cells (MCs) support in vivo the growth of prostate adenocarcinoma, whereas their genetic or pharmacologic targeting favors prostate NE cancer arousal. Aiming at simultaneously targeting prostate NE tumor cells and MCs, both expressing the cKit tyrosine kinase receptor, we have tested the therapeutic effect of imatinib in TRAMP mice. Imatinib-treated TRAMP mice experience a partial benefit against prostate adenocarcinoma, because of inhibition of supportive MCs. However, they show an unexpected outgrowth of prostate NE tumors, likely because of defective signaling pathway downstream of cKit receptor. Also unexpected but very effective was the inhibition of epithelial-stromal tumors of the seminal vesicles achieved by imatinib treatment. These tumors normally arise in the seminal vesicles of TRAMP mice, independently of the degree of prostatic glandular lesions, and resemble phyllodes tumors found in human prostate and seminal vesicles, and in breast. In both mice and in patients, these tumors are negative for cKit but express PDGFR-beta, another tyrosine kinase receptor specifically inhibited by imatinib. Our results imply a possible detrimental effect of imatinib in prostate cancer patients but suggest a promising therapeutic application of imatinib in the treatment of recurrent or metastatic phyllodes tumors. Mol Cancer Ther; 16(2); 365-75. (c)2016 AACR.

U2 - 10.1158/1535-7163.MCT-16-0466

DO - 10.1158/1535-7163.MCT-16-0466

M3 - Articolo

VL - 16

SP - 365

EP - 375

JO - Molecular Cancer Therapeutics

JF - Molecular Cancer Therapeutics

SN - 1535-7163

IS - 2

ER -