Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium

Christopher S R Baker, David P. Dutka, Domenico Pagano, Ornella Rimoldi, Michael Pitt, Roger J C Hall, Julia M. Polak, Robert S. Bonser, Paolo G. Camici

Research output: Contribution to journalArticlepeer-review


Background: Myocardial hibernation may result from repetitive episodes of transient ischaemia leading to prolonged dysfunction. Inducible nitric oxide synthase (iNOS) expression has been demonstrated in animals following brief, non-lethal ischaemia-reperfusion injury. We therefore, hypothesised that in human hibernating myocardium: 1) iNOS would be present; 2) the reaction of nitric oxide and superoxide would form the strong oxidant peroxynitrite; 3) that this process would be accompanied by the expression of cyclooxygenase-2 (Cox-2) which interacts with NOS and whose products could further affect myocardial function. Method and results: In sixteen patients with coronary artery disease (CAD), left ventricular biopsies were obtained from chronically dysfunctional segments subtended by a stenotic artery (> 75 %) and shown to be viable by 18F-fluorodeoxyglucose positron emission tomography. Comparison was made with myocardial biopsies (n = 8) from normally contracting myocardium in patients undergoing coronary surgery, from unused transplant donors and at post-mortem. Regional wall motion score improved in all patients 6 months post-revascularisation (from 2.7 ± 0.7 to 1.5 ± 0.5; p <0.001), confirming hibernation. Immunocytochemistry localized reactivity to iNOS, Cox-2 and nitrotyrosine (a marker of peroxynitrite formation) to cardiomyocytes from hibernating segments. No difference in reactivity to endothelial NOS was seen between hibernating and control cardiomyocytes. Conclusion: Cox-2 and iNOS are co-expressed in hibernating myocardium with nitrotyrosine suggesting nitric oxide production and peroxynitrite formation. We propose that this is secondary to ischaemia-reperfusion and that the products of these enzymes may have consequences for myocardial contractile function and survival.

Original languageEnglish
Pages (from-to)409-415
Number of pages7
JournalBasic Research in Cardiology
Issue number5
Publication statusPublished - Sep 2002


  • Coronary artery disease
  • Free radicals
  • Histochemistry
  • Positron emission tomography
  • Ventricular dysfunction

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium'. Together they form a unique fingerprint.

Cite this