In vitro and in vivo evaluation of acellular diaphragmatic matrices seeded with muscle precursors cells and coated with VEGF silica gels to repair muscle defect of the diaphragm

Maria T. Conconi, Silvia Bellini, Debora Teoli, Paolo De Coppi, Domenico Ribatti, Beatrice Nico, Enea Simonato, Pier G. Gamba, Gastone G. Nussdorfer, Margherita Morpurgo, Pier P. Parnigotto

Research output: Contribution to journalArticle

Abstract

In this work, a bioartificial system consisting of VEGF-loaded porous silica gel and myoblasts cultured on acellular diaphragmatic matrix (ADM) has been implanted to repair a surgically created diaphragmatic defect in Lewis rats. ADMs exerted a strong angiogenic response on chorio-allantoic membrane. Cytotoxicity, VEGF release and matrix erodibility in vitro tests demonstrated that the silica support was nontoxic and that the VEGF bioactivity was maintained after matrix entrapment and it was released within a timeframe that can be modulated by synthesis parameters. Different grafts composed by ADMs with and without autologous male myoblasts or/and VEGF-loaded porous silica gel have been implanted to repair previously created diaphragmatic defects in female Lewis rats. Patches composed of ADMs and myoblasts appeared well preserved until 8 weeks, and contained multinucleated cells and cholinergic fibers. At 8 weeks, the implanted cells were still present inside the patches. The disappointing results obtained when VEGF was delivered by porous silica gel were probably due to an abnormal angiogenic response following an excess of local growth factor concentration. Taken together, these results confirmed that our matrices contained biologically active angiogenic factors which were per se sufficient to induce neo-vessels formation, thus allowing the survival of implanted myoblasts.

Original languageEnglish
Pages (from-to)304-316
Number of pages13
JournalJournal of Biomedical Materials Research - Part A
Volume89
Issue number2
DOIs
Publication statusPublished - May 2009

Keywords

  • Acellular matrix
  • Angiogenesis
  • Diaphragmatic hernia
  • Silica
  • Sol-gel techniques

ASJC Scopus subject areas

  • Biomedical Engineering
  • Biomaterials
  • Ceramics and Composites
  • Metals and Alloys
  • Medicine(all)

Fingerprint Dive into the research topics of 'In vitro and in vivo evaluation of acellular diaphragmatic matrices seeded with muscle precursors cells and coated with VEGF silica gels to repair muscle defect of the diaphragm'. Together they form a unique fingerprint.

  • Cite this

    Conconi, M. T., Bellini, S., Teoli, D., De Coppi, P., Ribatti, D., Nico, B., Simonato, E., Gamba, P. G., Nussdorfer, G. G., Morpurgo, M., & Parnigotto, P. P. (2009). In vitro and in vivo evaluation of acellular diaphragmatic matrices seeded with muscle precursors cells and coated with VEGF silica gels to repair muscle defect of the diaphragm. Journal of Biomedical Materials Research - Part A, 89(2), 304-316. https://doi.org/10.1002/jbm.a.31982