TY - JOUR
T1 - In vitro receptor binding properties of a "painless" NGF mutein, linked to hereditary sensory autonomic neuropathy type V
AU - Covaceuszach, Sonia
AU - Capsoni, Simona
AU - Marinelli, Sara
AU - Pavone, Flaminia
AU - Ceci, Marcello
AU - Ugolini, Gabriele
AU - Vignone, Domenico
AU - Amato, Gianluca
AU - Paoletti, Francesca
AU - Lamba, Doriano
AU - Cattaneo, Antonino
PY - 2010/1/1
Y1 - 2010/1/1
N2 - Nerve Growth Factor (NGF) signalling is mediated by the TrkA and p75NTR receptors. Besides its neurotrophic and survival activities, NGF displays a potent pro-nociceptive activity. Recently, a missense point mutation was found in the NGFB gene (C661T, leading to the aminoacid substitution R100W) of individuals affected by a form of hereditary loss of pain perception (hereditary sensory and autonomic neuropathy type V, HSAN V). In order to gain insights into the functional consequences of the HSAN V NGF mutation, two sets of hNGFR100 mutants were expressed in Escherichia coli and purified, as mature NGF or proNGF, for in vitro receptor binding studies. Here, we show by Surface Plasmon Resonance analysis that the R100 mutation selectively disrupts binding of hNGF to p75NTR receptor, to an extent which depends on the substituting residue at position 100, while the affinity of hNGFR100 mutants for TrkA receptor is not affected. As for unprocessed hproNGF, the binding of the R100 variants to p75NTR receptor shows only a limited impairment, showing that the impact of the R100 mutation on p75NTR receptor binding is greater in the context of mature, processed hNGF. These results provide a basis for elucidating the mechanisms underlying the clinical manifestations of HSAN V patients, and provide a basis for the development of "painless" hNGF molecules with therapeutic potential.
AB - Nerve Growth Factor (NGF) signalling is mediated by the TrkA and p75NTR receptors. Besides its neurotrophic and survival activities, NGF displays a potent pro-nociceptive activity. Recently, a missense point mutation was found in the NGFB gene (C661T, leading to the aminoacid substitution R100W) of individuals affected by a form of hereditary loss of pain perception (hereditary sensory and autonomic neuropathy type V, HSAN V). In order to gain insights into the functional consequences of the HSAN V NGF mutation, two sets of hNGFR100 mutants were expressed in Escherichia coli and purified, as mature NGF or proNGF, for in vitro receptor binding studies. Here, we show by Surface Plasmon Resonance analysis that the R100 mutation selectively disrupts binding of hNGF to p75NTR receptor, to an extent which depends on the substituting residue at position 100, while the affinity of hNGFR100 mutants for TrkA receptor is not affected. As for unprocessed hproNGF, the binding of the R100 variants to p75NTR receptor shows only a limited impairment, showing that the impact of the R100 mutation on p75NTR receptor binding is greater in the context of mature, processed hNGF. These results provide a basis for elucidating the mechanisms underlying the clinical manifestations of HSAN V patients, and provide a basis for the development of "painless" hNGF molecules with therapeutic potential.
KW - Binding affinity
KW - Human genetic disease
KW - Nerve Growth Factor
KW - p75NTR
KW - Pain
KW - TrkA
UR - http://www.scopus.com/inward/record.url?scp=72949101768&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72949101768&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2009.11.146
DO - 10.1016/j.bbrc.2009.11.146
M3 - Article
C2 - 19945432
AN - SCOPUS:72949101768
VL - 391
SP - 824
EP - 829
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
SN - 0006-291X
IS - 1
ER -