Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models

Stefania Pagani, Veronica Borsari, Francesca Veronesi, Andrea Ferrari, Simona Cepollaro, Paola Torricelli, Giuseppe Filardo, Milena Fini

Research output: Contribution to journalArticle

Abstract

Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications.

Original languageEnglish
JournalJournal of Cellular Physiology
DOIs
Publication statusAccepted/In press - 2016

Fingerprint

Stem cells
Gene expression
Bone Marrow Cells
Adipose Tissue
Bone
Synovial Fluid
Tissue
Mesenchymal Stromal Cells
Inflammation Mediators
Fluids
Gene Expression
Knee
Bone Marrow
Chemical analysis
In Vitro Techniques

ASJC Scopus subject areas

  • Medicine(all)
  • Physiology
  • Clinical Biochemistry
  • Cell Biology

Cite this

@article{3176b301db2646ba8f9f6b36da380ba2,
title = "Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models",
abstract = "Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications.",
author = "Stefania Pagani and Veronica Borsari and Francesca Veronesi and Andrea Ferrari and Simona Cepollaro and Paola Torricelli and Giuseppe Filardo and Milena Fini",
year = "2016",
doi = "10.1002/jcp.25651",
language = "English",
journal = "Journal of cellular and comparative physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",

}

TY - JOUR

T1 - Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models

AU - Pagani, Stefania

AU - Borsari, Veronica

AU - Veronesi, Francesca

AU - Ferrari, Andrea

AU - Cepollaro, Simona

AU - Torricelli, Paola

AU - Filardo, Giuseppe

AU - Fini, Milena

PY - 2016

Y1 - 2016

N2 - Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications.

AB - Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications.

UR - http://www.scopus.com/inward/record.url?scp=84999048273&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84999048273&partnerID=8YFLogxK

U2 - 10.1002/jcp.25651

DO - 10.1002/jcp.25651

M3 - Article

AN - SCOPUS:84999048273

JO - Journal of cellular and comparative physiology

JF - Journal of cellular and comparative physiology

SN - 0021-9541

ER -