Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis

Martina Rinaldi, Alberto Ranavolo, Silvia Conforto, Giovanni Martino, Francesco Draicchio, Carmela Conte, Tiwana Varrecchia, Fabiano Bini, Carlo Casali, Francesco Pierelli, Mariano Serrao

Research output: Contribution to journalArticle

Abstract

Background The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Methods Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time–distance, kinematic, kinetic, and energetic parameters were estimated. Findings Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Interpretation Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity.

Original languageEnglish
Pages (from-to)63-72
Number of pages10
JournalClinical Biomechanics
Volume48
DOIs
Publication statusPublished - Oct 1 2017

    Fingerprint

Keywords

  • Energy consumption
  • Energy recovery
  • Gait analysis
  • Hereditary spastic paraparesis
  • Muscle co-activation

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine

Cite this