Influence of sympathetic vascular regulation on heart-rate scaling structure

Spinal cord lesion as a model of progressively impaired autonomic control

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Estimation of self-similarity is a promising tool for quantifying alterations in cardiovascular dynamics. To evaluate the as yet unexplored influence of sympathetic vascular regulation on the scaling exponent, namely on the parameter characterizing self-similarity, we studied patients with a spinal cord injury as a model of progressively impaired vascular control. We considered 24 able-bodied subjects (AB) and 23 paraplegics with increasing lesion levels: between T12 and L4 (n=7); T5 and T11 (n=9); and C6 and T4 (n=7). We recorded the heart rate in three conditions characterized by increasing sympathetic activation: supine (SUP), sitting (SIT) and exercise (EXE). We calculated the scaling exponent by detrended fluctuation analysis (HDFA). Sympathetic activation had different effects on HDFA, depending on the lesion level. H DFA tended to decrease in AB from SUP (0.85+0.02; mean+SEM) and SIT (0.84+0.02) to EXE (0.79+0.02). It remained constant in the T 12-L4 group (0.92+0.04, 0.94+0.05 and 0.94+0.04, respectively), while it increased significantly in the T5-T 11 group (0.88+0.07, 0.94+0.05, 1.00+0.08) and increased even more in the C6-T4 group (0.83+0.07, 0.91+0.05, 1.06+0.06). Results suggest that heart-rate self-similarity depends on vascular sympathetic control, because it is altered by spinal-cord lesions, even when cardiac neural control is intact.

Original languageEnglish
Pages (from-to)240-243
Number of pages4
JournalBiomedizinische Technik
Volume51
Issue number4
DOIs
Publication statusPublished - Oct 1 2006

Fingerprint

Blood Vessels
Spinal Cord
Heart Rate
Chemical activation
Exercise
Theophylline
Spinal Cord Injuries
Scanning electron microscopy

Keywords

  • DFA
  • Scaling exponent
  • Spinal lesion
  • Sympathetic tone

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics

Cite this

@article{27cffe4eacb0482fa2f3ad2e982891fc,
title = "Influence of sympathetic vascular regulation on heart-rate scaling structure: Spinal cord lesion as a model of progressively impaired autonomic control",
abstract = "Estimation of self-similarity is a promising tool for quantifying alterations in cardiovascular dynamics. To evaluate the as yet unexplored influence of sympathetic vascular regulation on the scaling exponent, namely on the parameter characterizing self-similarity, we studied patients with a spinal cord injury as a model of progressively impaired vascular control. We considered 24 able-bodied subjects (AB) and 23 paraplegics with increasing lesion levels: between T12 and L4 (n=7); T5 and T11 (n=9); and C6 and T4 (n=7). We recorded the heart rate in three conditions characterized by increasing sympathetic activation: supine (SUP), sitting (SIT) and exercise (EXE). We calculated the scaling exponent by detrended fluctuation analysis (HDFA). Sympathetic activation had different effects on HDFA, depending on the lesion level. H DFA tended to decrease in AB from SUP (0.85+0.02; mean+SEM) and SIT (0.84+0.02) to EXE (0.79+0.02). It remained constant in the T 12-L4 group (0.92+0.04, 0.94+0.05 and 0.94+0.04, respectively), while it increased significantly in the T5-T 11 group (0.88+0.07, 0.94+0.05, 1.00+0.08) and increased even more in the C6-T4 group (0.83+0.07, 0.91+0.05, 1.06+0.06). Results suggest that heart-rate self-similarity depends on vascular sympathetic control, because it is altered by spinal-cord lesions, even when cardiac neural control is intact.",
keywords = "DFA, Scaling exponent, Spinal lesion, Sympathetic tone",
author = "Paolo Castiglioni and Giampiero Merati and Arsenio Veicsteinas and Gianfranco Parati and {Di Rienzo}, Marco",
year = "2006",
month = "10",
day = "1",
doi = "10.1515/BMT.2006.046",
language = "English",
volume = "51",
pages = "240--243",
journal = "Biomedizinische Technik. Biomedical engineering",
issn = "0013-5585",
publisher = "Walter de Gruyter GmbH & Co. KG",
number = "4",

}

TY - JOUR

T1 - Influence of sympathetic vascular regulation on heart-rate scaling structure

T2 - Spinal cord lesion as a model of progressively impaired autonomic control

AU - Castiglioni, Paolo

AU - Merati, Giampiero

AU - Veicsteinas, Arsenio

AU - Parati, Gianfranco

AU - Di Rienzo, Marco

PY - 2006/10/1

Y1 - 2006/10/1

N2 - Estimation of self-similarity is a promising tool for quantifying alterations in cardiovascular dynamics. To evaluate the as yet unexplored influence of sympathetic vascular regulation on the scaling exponent, namely on the parameter characterizing self-similarity, we studied patients with a spinal cord injury as a model of progressively impaired vascular control. We considered 24 able-bodied subjects (AB) and 23 paraplegics with increasing lesion levels: between T12 and L4 (n=7); T5 and T11 (n=9); and C6 and T4 (n=7). We recorded the heart rate in three conditions characterized by increasing sympathetic activation: supine (SUP), sitting (SIT) and exercise (EXE). We calculated the scaling exponent by detrended fluctuation analysis (HDFA). Sympathetic activation had different effects on HDFA, depending on the lesion level. H DFA tended to decrease in AB from SUP (0.85+0.02; mean+SEM) and SIT (0.84+0.02) to EXE (0.79+0.02). It remained constant in the T 12-L4 group (0.92+0.04, 0.94+0.05 and 0.94+0.04, respectively), while it increased significantly in the T5-T 11 group (0.88+0.07, 0.94+0.05, 1.00+0.08) and increased even more in the C6-T4 group (0.83+0.07, 0.91+0.05, 1.06+0.06). Results suggest that heart-rate self-similarity depends on vascular sympathetic control, because it is altered by spinal-cord lesions, even when cardiac neural control is intact.

AB - Estimation of self-similarity is a promising tool for quantifying alterations in cardiovascular dynamics. To evaluate the as yet unexplored influence of sympathetic vascular regulation on the scaling exponent, namely on the parameter characterizing self-similarity, we studied patients with a spinal cord injury as a model of progressively impaired vascular control. We considered 24 able-bodied subjects (AB) and 23 paraplegics with increasing lesion levels: between T12 and L4 (n=7); T5 and T11 (n=9); and C6 and T4 (n=7). We recorded the heart rate in three conditions characterized by increasing sympathetic activation: supine (SUP), sitting (SIT) and exercise (EXE). We calculated the scaling exponent by detrended fluctuation analysis (HDFA). Sympathetic activation had different effects on HDFA, depending on the lesion level. H DFA tended to decrease in AB from SUP (0.85+0.02; mean+SEM) and SIT (0.84+0.02) to EXE (0.79+0.02). It remained constant in the T 12-L4 group (0.92+0.04, 0.94+0.05 and 0.94+0.04, respectively), while it increased significantly in the T5-T 11 group (0.88+0.07, 0.94+0.05, 1.00+0.08) and increased even more in the C6-T4 group (0.83+0.07, 0.91+0.05, 1.06+0.06). Results suggest that heart-rate self-similarity depends on vascular sympathetic control, because it is altered by spinal-cord lesions, even when cardiac neural control is intact.

KW - DFA

KW - Scaling exponent

KW - Spinal lesion

KW - Sympathetic tone

UR - http://www.scopus.com/inward/record.url?scp=34247198422&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247198422&partnerID=8YFLogxK

U2 - 10.1515/BMT.2006.046

DO - 10.1515/BMT.2006.046

M3 - Article

VL - 51

SP - 240

EP - 243

JO - Biomedizinische Technik. Biomedical engineering

JF - Biomedizinische Technik. Biomedical engineering

SN - 0013-5585

IS - 4

ER -