TY - JOUR
T1 - Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence
AU - Giorello, Laura
AU - Clerico, Luana
AU - Pescarolo, Maria Pia
AU - Vikhanskaya, Faina
AU - Salmona, Mario
AU - Colella, Gennaro
AU - Bruno, Silvia
AU - Mancuso, Tommaso
AU - Bagnasco, Luca
AU - Russo, Patrizia
AU - Parodi, Silvio
PY - 1998/8/15
Y1 - 1998/8/15
N2 - c-Myc is a nuclear protein with important roles in cell transformation, cell proliferation, and gene transcription. It has been previously shown that a 14-amino acid (aa) modified peptide (H1-S6A,F8A) derived from the helix 1 (H1) carboxylic region of c-Myc can interfere in vitro with specific c-Myc DNA binding. Here, we have linked the above Myc-derived 14-aa peptide to a 16-aa sequence from the third helix of Antennapedia (Int). It has been repeatedly reported that this 16-aa Antennapedia peptide is able to cross mammalian cell membranes and to work as a vector for short peptides. Using fluorescent (dansylated or rhodaminated) peptides, we have shown that the fusion peptide with the Antennapedia fragment (Int-H1-S6A,F8A) but not the c- Myc derived fragment alone (H1-S6A,F8A) was capable of internalization inside MCF-7 human breast cancer cells. Int-H1-S6A,F8A and H1-S6A,F8A were the only two peptides capable of inhibiting coimmunoprecipitation of the c-Myc/Max heterodimer in vitro. We have treated (continuously for 10-11 days) MCF-7 cells with four different peptides: Int, H1-S6A,F8A, Int-H1-S6A,F8A, and Int- H1wt [a peptide differing from Int-H1-S6A,F8A by 2 aa (S6 and F8) in the H1 region]. In intact MCF-7 cells, Int-H1-S6A,F8A was the only active peptide capable of inducing the following biological effects: (a) inhibition of cloning efficiency on plates; (b) inhibition of cell growth and induction of apoptosis in subconfluent/confluent cells; and (c) inhibition of transcription of two c-Myc-regulated genes (ODC and p53). Int-H1-S6A,F8A was active in the 1-10 μM range. Int-H1-S6A,F8A may represent a lead molecule for peptidomimetic compounds that have a similar three-dimensional structure but are more resistant to peptidases and, therefore, suitable for in vivo treatment of experimentally induced tumors.
AB - c-Myc is a nuclear protein with important roles in cell transformation, cell proliferation, and gene transcription. It has been previously shown that a 14-amino acid (aa) modified peptide (H1-S6A,F8A) derived from the helix 1 (H1) carboxylic region of c-Myc can interfere in vitro with specific c-Myc DNA binding. Here, we have linked the above Myc-derived 14-aa peptide to a 16-aa sequence from the third helix of Antennapedia (Int). It has been repeatedly reported that this 16-aa Antennapedia peptide is able to cross mammalian cell membranes and to work as a vector for short peptides. Using fluorescent (dansylated or rhodaminated) peptides, we have shown that the fusion peptide with the Antennapedia fragment (Int-H1-S6A,F8A) but not the c- Myc derived fragment alone (H1-S6A,F8A) was capable of internalization inside MCF-7 human breast cancer cells. Int-H1-S6A,F8A and H1-S6A,F8A were the only two peptides capable of inhibiting coimmunoprecipitation of the c-Myc/Max heterodimer in vitro. We have treated (continuously for 10-11 days) MCF-7 cells with four different peptides: Int, H1-S6A,F8A, Int-H1-S6A,F8A, and Int- H1wt [a peptide differing from Int-H1-S6A,F8A by 2 aa (S6 and F8) in the H1 region]. In intact MCF-7 cells, Int-H1-S6A,F8A was the only active peptide capable of inducing the following biological effects: (a) inhibition of cloning efficiency on plates; (b) inhibition of cell growth and induction of apoptosis in subconfluent/confluent cells; and (c) inhibition of transcription of two c-Myc-regulated genes (ODC and p53). Int-H1-S6A,F8A was active in the 1-10 μM range. Int-H1-S6A,F8A may represent a lead molecule for peptidomimetic compounds that have a similar three-dimensional structure but are more resistant to peptidases and, therefore, suitable for in vivo treatment of experimentally induced tumors.
UR - http://www.scopus.com/inward/record.url?scp=17944392627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17944392627&partnerID=8YFLogxK
M3 - Article
C2 - 9721875
AN - SCOPUS:17944392627
VL - 58
SP - 3654
EP - 3659
JO - Journal of Cancer Research
JF - Journal of Cancer Research
SN - 0008-5472
IS - 16
ER -