Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells

Patrizia Vernole, Alessia Muzi, Antonio Volpi, Annalisa S. Dorio, Alessandro Terrinoni, Girish M. Shah, Grazia Graziani

Research output: Contribution to journalArticlepeer-review

Abstract

Mismatch repair (MMR) has been shown to control homologous recombination (HR) by aborting strand exchange between divergent sequences. We previously demonstrated that MMR-deficient tumour cells are more resistant to chromosomal damage induced by bleomycin (BLM) during the G2 phase, likely due to the lack of the MMR inhibitory effect on HR. Aim of this study was to investigate whether inhibition of HR by the nucleoside analogue BVDU [(E)-5(2-bromovinyl)-2′-deoxyuridine, brivudin], or silencing of genes involved in HR function, might affect sensitivity of MMR-deficient tumour cells to DNA damage induced by BLM in G2. The results indicated that BVDU increased chromatid damage and DNA double strand breaks induced by BLM only in MMR-deficient MT-1, HL-60R, HCT116 cells, which are more resistant to BLM with respect to MMR-proficient TK-6, HL-60S and HCT116/3-6 lines. Silencing of RAD51, a key component of HR, increased sensitivity of MMR-deficient HCT-15 cells to BLM clastogenicity; in this case combined treatment with BVDU had no additional effect. Similarly, treatment with BVDU did not affect BLM clastogenicity in CAPAN-1 cells, characterized by a defective HR due to BRCA2 mutations. Conversely, BVDU increased chromatid breaks induced by BLM in HCT-15 cells transiently silenced for DNA-PK catalytic subunit, which plays a key role in non-homologous end joining. The BVDU-mediated increase of chromatid breaks in MMR-deficient cells did not depend on its previously reported inhibitory effect on poly(ADP-ribose) polymerase (PARP). In fact, it was observed also in cells stably silenced for PARP-1, which is responsible for most of cellular PARP activity. These data support the suggestion that the higher sensitivity of MMR-proficient versus MMR-deficient cells to BLM-induced chromatid breaks in the G2 phase is a consequence of the inhibition of HR by MMR. In MMR-deficient cells, BVDU attenuates the repair of BLM-induced DSBs and this is likely to occur via inhibition of HR.

Original languageEnglish
Pages (from-to)39-47
Number of pages9
JournalMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Volume664
Issue number1-2
DOIs
Publication statusPublished - May 12 2009

Keywords

  • Bleomycin
  • Brivudin
  • Homologous recombination
  • Mismatch repair
  • PARP1

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells'. Together they form a unique fingerprint.

Cite this