Abstract
Original language | English |
---|---|
Pages (from-to) | 537-546 |
Number of pages | 10 |
Journal | Eur. J. Cancer |
Volume | 120 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- diclofenac
- ketoprofen
- ketorolac
- nicotinamide
- nimesulide
- prostaglandin synthase inhibitor
- protein p53
- sirtuin 1
- small interfering RNA
- sulindac sulfone
- antineoplastic agent
- cyclin dependent kinase inhibitor 1A
- nonsteroid antiinflammatory agent
- sulindac
- acetylation
- animal cell
- animal experiment
- animal model
- animal tissue
- antineoplastic activity
- Article
- bioluminescence
- breast cancer
- cancer incidence
- cancer inhibition
- cancer survival
- chemoprophylaxis
- computer model
- controlled study
- densitometry
- drug mechanism
- enantiomer
- ex vivo study
- female
- gene expression
- in vivo study
- molecular biology
- molecular docking
- molecular model
- mouse
- nonhuman
- priority journal
- protein expression
- real time polymerase chain reaction
- stable transfection
- Western blotting
- animal
- computer simulation
- drug effect
- human
- metabolism
- tumor cell line
- Animals
- Anti-Inflammatory Agents, Non-Steroidal
- Anticarcinogenic Agents
- Cell Line, Tumor
- Computer Simulation
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclooxygenase Inhibitors
- Humans
- Ketorolac
- Mice
- Models, Molecular
- Sirtuin 1
- Sulindac
- Tumor Suppressor Protein p53
Fingerprint Dive into the research topics of 'Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs: British Journal of Cancer'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs : British Journal of Cancer. / Dell’Omo, G.; Crescenti, D.; Vantaggiato, C.; Parravicini, C.; Borroni, A.P.; Rizzi, N.; Garofalo, M.; Pinto, A.; Recordati, C.; Scanziani, E.; Bassi, F.D.; Pruneri, G.; Conti, P.; Eberini, I.; Maggi, A.; Ciana, P.
In: Eur. J. Cancer, Vol. 120, No. 5, 2019, p. 537-546.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs
T2 - British Journal of Cancer
AU - Dell’Omo, G.
AU - Crescenti, D.
AU - Vantaggiato, C.
AU - Parravicini, C.
AU - Borroni, A.P.
AU - Rizzi, N.
AU - Garofalo, M.
AU - Pinto, A.
AU - Recordati, C.
AU - Scanziani, E.
AU - Bassi, F.D.
AU - Pruneri, G.
AU - Conti, P.
AU - Eberini, I.
AU - Maggi, A.
AU - Ciana, P.
N1 - Cited By :4 Export Date: 26 February 2020 CODEN: BJCAA Correspondence Address: Ciana, P.; Department of Oncology and Hemato-Oncology, University of MilanItaly; email: paolo.ciana@unimi.it Chemicals/CAS: diclofenac, 15307-79-6, 15307-86-5; ketoprofen, 22071-15-4, 57495-14-4; ketorolac, 74103-06-3; nicotinamide, 11032-50-1, 98-92-0; nimesulide, 51803-78-2; sulindac sulfone, 59973-80-7; sulindac, 38194-50-2; Anti-Inflammatory Agents, Non-Steroidal; Anticarcinogenic Agents; Cyclin-Dependent Kinase Inhibitor p21; Cyclooxygenase Inhibitors; Ketorolac; Sirtuin 1; Sulindac; sulindac sulfone; Tumor Suppressor Protein p53 Funding details: Ministero dell’Istruzione, dell’Università e della Ricerca Funding details: 11903 Funding details: 2009–2439 Funding text 1: Ethical approval animal experimentation All animal experimentation was carried out in accordance with the Guide for the Care and Use of Laboratory Animals in accordance with the European Guidelines for Animal Care and Use of Experimental Animals, approved by the Italian Ministry of the Research and University (MIUR) and controlled by the panel of experts of the Department of Pharmacological and Biomolecular Sciences (University of Milan, 20133 Milan, Italy). For the experiments before 2014 the MIUR authorisation was DM 295/ 2012-A dated 20.12.2012 n. 10/2012, afterward experiments were done under MIUR authorisation n. 611/2015 PR. All animal experimentation was carried out in the full observation of the Directive 2010/63/UE. Funding text 2: We thank L. Maravigna, M. Pandini, F. Cicala, M. Rebecchi, and C. Meda for technical assistance. This work was supported by Italian Association for Cancer Research IG Grants 11903 (to P.C.), CARIPLO Foundation Project 2009–2439 (to P.C.) and Frame Program 7 of European Union: INMiND-278850 (to A.M. and P.C.). References: Torre, L.A., Global cancer statistics, 2012 (2015) CA a Cancer J. Clin., 65, pp. 87-108; Cuzick, J., Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement (2009) Lancet Oncol., 10, pp. 501-507. , COI: 1:CAS:528:DC%2BD1MXlsVKhs78%3D, PID: 19410194; Alshafie, G.A., Comparative chemopreventive activity of ibuprofen and N-(4-hydroxyphenyl) retinamide against the development and growth of rat mammary adenocarcinomas (1999) Anticancer Res., 19, pp. 3031-3036. , COI: 1:CAS:528:DC%2BD3cXmvF2msA%3D%3D, PID: 10652588; Guo, G., Zhang, X., Yao, Z., The effect of selective cyclooxygenase-2 inhibitor nimesulide on breast cancer induced by dimethylbenzoic acid in rats (2005) Zhonghua. Wai. Ke. Za. Zhi., 43, pp. 1017-1020. , PID: 16194365; Harris, R.E., Alshafie, G.A., Abou-Issa, H., Seibert, K., Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor (2000) Cancer Res., 60, pp. 2101-2103. , COI: 1:CAS:528:DC%2BD3cXivVaks7Y%3D, PID: 10786667; Thompson, H.J., Sulfone metabolite of sulindac inhibits mammary carcinogenesis (1997) Cancer Res., 57, pp. 267-271. , COI: 1:CAS:528:DyaK2sXntFKiuw%3D%3D; Thakur, P., Sanyal, S.N., Induction of pulmonary carcinogenesis in Wistar rats by a single dose of 9, 10 dimethylbenz(a)anthracene (DMBA) and the chemopreventive role of diclofenac (2010) Exp. Mol. Pathol., 88, pp. 394-400. , COI: 1:CAS:528:DC%2BC3cXlvVehtbY%3D, PID: 20233591; Forget, P., Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis (2010) Anesth. Analg., 110, pp. 1630-1635. , COI: 1:CAS:528:DC%2BC3cXmsFerurg%3D, PID: 20435950; Guo, Y., A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients (2015) Clin. Cancer Res., 21, pp. 5064-5072. , COI: 1:CAS:528:DC%2BC2MXhvVajsbnM, PID: 26071482; Moris, D., Kontos, M., Spartalis, E., Fentiman, I.S., The Role of NSAIDs in Breast Cancer Prevention and Relapse: Current Evidence and Future Perspectives (2016) Breast Care (Basel), 11, pp. 339-344; Piazuelo, E., Lanas, A., NSAIDS and gastrointestinal cancer (2015) Prostaglandins Other Lipid Mediat., 120, pp. 91-96. , COI: 1:CAS:528:DC%2BC2MXhtV2isbbE; Desmedt, C., Potential benefit of intra-operative administration of ketorolac on breast cancer recurrence according to the patient’s body mass index (2018) J. Natl. Cancer Inst., 110, pp. 1-8; Brown, J.R., DuBois, R.N., COX-2: A molecular target for colorectal cancer prevention (2005) J. Clin. Oncol., 23, pp. 2840-2855. , COI: 1:CAS:528:DC%2BD2MXktleqt7w%3D; Gurpinar, E., Grizzle, W.E., Piazza, G.A., COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs (2013) Front. Oncol., 3, pp. 1-18; Arber, N., Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study (2006) Gut, 55, pp. 367-373. , COI: 1:CAS:528:DC%2BD28Xis1Sjtr8%3D, PID: 16150858; Stoner, G.D., Dietary Modulation of Cellular and Molecular Mechanisms (1999) Colon Cancer Prevention, pp. 45-53. , Springer, US; Piazza, G.A., Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels (1997) Cancer Res., 57, pp. 2909-2915. , COI: 1:CAS:528:DyaK2sXkslOktLY%3D, PID: 9230200; Vantaggiato, C., Cell cycle dependent oscillatory expression of estrogen receptor-α links Pol II elongation to neoplastic transformation (2014) Proc. Natl Acad. Sci. USA, 111, pp. 9561-9566. , COI: 1:CAS:528:DC%2BC2cXpvVSltL4%3D, PID: 24979764; Cohen, H.Y., Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase (2004) Science, 305, pp. 390-392. , COI: 1:CAS:528:DC%2BD2cXls1egtrs%3D, PID: 15205477; Genheden, S., Ryde, U., The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities (2015) Expert Opin. Drug Discov., 10, pp. 449-461. , COI: 1:CAS:528:DC%2BC2MXntFGktr8%3D, PID: 4487606; Goeman, F., Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals (2012) Mol. Biol. Cell., 23, pp. 1467-1474. , COI: 1:CAS:528:DC%2BC38XlvFSqur8%3D, PID: 3327325; Ciana, P., In vivo imaging of transcriptionally active estrogen receptors (2002) Nat. Med., 9, pp. 82-86; Piazza, G.A., Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis (1995) Cancer Res., 55, pp. 3110-3116. , COI: 1:CAS:528:DyaK2MXmvVyitL4%3D; Gurpinar, E., Grizzle, W.E., Piazza, G.A., NSAIDs inhibit tumourigenesis, but how? (2014) Clin. Cancer Res., 20, pp. 1104-1113. , COI: 1:CAS:528:DC%2BC2cXks1Ohtbo%3D; Alfonso, L.F., Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells (2009) Int. J. Oncol., 34, pp. 597-608. , COI: 1:CAS:528:DC%2BD1MXjs1Kgsrg%3D; Marjanović, M., Zorc, B., Pejnović, L., Zovko, M., Kralj, M., Fenoprofen and ketoprofen amides as potential antitumour agents (2007) Chem. Biol. Drug. Des., 69, pp. 222-226; Gu, W., Roeder, R.G., Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain (1997) Cell, 90, pp. 595-606. , COI: 1:CAS:528:DyaK2sXlvFKmtLc%3D; Luo, J., Negative control of p53 by Sir2alpha promotes cell survival under stress (2001) Cell, 107, pp. 137-148. , COI: 1:CAS:528:DC%2BD3MXotVSntro%3D; Beher, D., Resveratrol is not a direct activator of sirt1 enzyme activity (2009) Chem. Biol. Drug. Des., 74, pp. 619-624. , COI: 1:CAS:528:DC%2BD1MXhsVGku7bL; Pacholec, M., SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1 (2010) J. Biol. Chem., 285, pp. 8340-8351. , COI: 1:CAS:528:DC%2BC3cXisl2jtr0%3D, PID: 20061378; Halley, F., A Bioluminogenic HDAC Activity Assay: Validation and Screening (2011) J. Biomol. Screen., 16, pp. 1227-1235. , COI: 1:CAS:528:DC%2BC38Xht1SltL0%3D, PID: 21832257; Zhao, X., The 2.5?? crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition (2013) J. Med. Chem., 56, pp. 963-969. , COI: 1:CAS:528:DC%2BC3sXntVWlsg%3D%3D; Min, J., Landry, J., Sternglanz, R., Xu, R.M., Crystal structure of a SIR2 homolog-NAD complex (2001) Cell, 105, pp. 269-279. , COI: 1:CAS:528:DC%2BD3MXjtFOktL0%3D, PID: 11336676; Dai, H., Crystallographic structure of a small molecule SIRT1 activator-enzyme complex (2015) Nat. Commun., 6. , PID: 4506539; Disch, J.S., Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3 (2013) J. Med. Chem., 56, pp. 3666-3679. , COI: 1:CAS:528:DC%2BC3sXlsV2gtrs%3D; Park, E.Y., Anticancer effects of a new SIRT inhibitor, MHY2256, against human breast cancer MCF-7 Cells via regulation of MDM2-p53 binding (2016) Int. J. Biol. Sci., 12, pp. 1555-1567. , COI: 1:CAS:528:DC%2BC1cXhslGnur0%3D, PID: 5166496; Kojima, K., A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells (2008) Biochem. Biophys. Res. Commun., 373, pp. 423-428. , COI: 1:CAS:528:DC%2BD1cXoslGmurY%3D; Kim, H.B., Amurensin G, a novel SIRT1 inhibitor, sensitises TRAIL-resistant human leukemic K562 cells to TRAIL-induced apoptosis (2012) Biochem. Pharmacol., 84, pp. 402-410. , COI: 1:CAS:528:DC%2BC38XntlSqur4%3D; Chen, A.C., A phase 3 randomised trial of nicotinamide for skin-cancer chemoprevention (2015) N. Engl. J. Med., 373, pp. 1618-1626. , COI: 1:CAS:528:DC%2BC28XnvFCkt78%3D; El-Deiry, W., WAF1, a potential mediator of p53 tumour suppression (1993) Cell, 75, pp. 817-825. , COI: 1:CAS:528:DyaK2cXpslGguw%3D%3D, PID: 8242752; Stell, A., Cancer modeling: modern imaging applications in the generation of novel animal model systems to study cancer progression and therapy (2007) Int. J. Biochem. Cell. Biol., 39, pp. 1288-1296. , COI: 1:CAS:528:DC%2BD2sXnslWlt7Y%3D, PID: 17418611; Tinkum, K.L., Bioluminescence imaging captures the expression and dynamics of endogenous p21 promoter activity in living mice and intact cells (2011) Mol. Cell. Biol., 31, pp. 3759-3772. , COI: 1:CAS:528:DC%2BC3MXhtFGmu7%2FN, PID: 21791610; Liu, T.F., McCall, C.E., Deacetylation by SIRT1 reprograms inflammation and cancer (2013) Genes Cancer, 4, pp. 135-147. , COI: 1:CAS:528:DC%2BC2MXjtFyjs7Y%3D, PID: 24020005; Chalkiadaki, A., Guarente, L., Sirtuins mediate mammalian metabolic responses to nutrient availability (2012) Nat. Rev. Endocrinol., 8, pp. 287-296. , COI: 1:CAS:528:DC%2BC38XlvFWiu74%3D, PID: 22249520; Joo, H.Y., SIRT1 deacetylates and stabilises hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia (2015) Biochem. Biophys. Res. Commun., 462, pp. 294-300. , COI: 1:CAS:528:DC%2BC2MXos1OgurY%3D, PID: 25979359; Din, F.V.N., Stark, L.A., Dunlop, M.G., Aspirin-induced nuclear translocation of NFkappaB and apoptosis in colorectal cancer is independent of p53 status and DNA mismatch repair proficiency (2005) Br. J. Cancer, 92, pp. 1137-1143. , COI: 1:CAS:528:DC%2BD2MXisVyitrs%3D, PID: 15770215; Solomon, J.M., Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage (2006) Mol. Cell. Biol., 26, pp. 28-38. , COI: 1:CAS:528:DC%2BD28XjslaqsLs%3D, PID: 16354677; Ghosh, A., A novel SIRT1 inhibitor, 4bb induces apoptosis in HCT116 human colon carcinoma cells partially by activating p53 (2017) Biochem. Biophys. Res. Commun., 488, pp. 562-569. , COI: 1:CAS:528:DC%2BC2sXotFynsLs%3D, PID: 28526414; Puca, R., Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis (2010) Free Radic. Biol. Med., 48, pp. 1338-1346. , COI: 1:CAS:528:DC%2BC3cXkvFKku7k%3D, PID: 20171273; Yamakuchi, M., Ferlito, M., Lowenstein, C.J., miR-34a repression of SIRT1 regulates apoptosis (2008) Proc. Natl. Acad. Sci USA., 105, pp. 13421-13426. , COI: 1:CAS:528:DC%2BD1cXhtFChs7rO; Noh, S.J., Acetylation status of P53 and the expression of DBC1, SIRT1, and androgen receptor are associated with survival in clear cell renal cell carcinoma patients (2013) Pathology, 45, pp. 574-580. , COI: 1:CAS:528:DC%2BC3sXhsVKgsrjF; Yi, Y.W., Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells (2013) Oncotarget, 4, pp. 984-994. , PID: 3759676; Wang, J., Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells (2012) Int. J. Oncol., 41, pp. 1101-1109. , COI: 1:CAS:528:DC%2BC38XhtlWhu7rP; Elangovan, S., SIRT1 is essential for oncogenic signalling by estrogen/estrogen receptor alpha in breast cancer (2011) Cancer Res., 71, pp. 6654-6664. , COI: 1:CAS:528:DC%2BC3MXhtlygtrvO, PID: 3206200; Kalle, A.M., Mallika, A., Badiger, J., Alinakhi, Talukdar, P., Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells (2010) Biochem. Biophys. Res. Commun., 401, pp. 13-19. , COI: 1:CAS:528:DC%2BC3cXht1OmsLfP; Peck, B., SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2 (2010) Mol. Cancer Ther., 9, pp. 844-855. , COI: 1:CAS:528:DC%2BC3cXktlCqt74%3D; Jin, X., SIRT1 promotes formation of breast cancer through modulating Akt activity (2018) J. Cancer, 9, pp. 2012-2023. , PID: 5995935; Chalkiadaki, A., Guarente, L., The multifaceted functions of sirtuins in cancer (2015) Nat. Rev. Cancer, 15, pp. 608-624. , COI: 1:CAS:528:DC%2BC2MXhsFeisb7L, PID: 26383140; Xu, Y., Qin, Q., Chen, R., Wei, C., Mo, Q., SIRT1 promotes proliferation, migration, and invasion of breast cancer cell line MCF-7 by upregulating DNA polymerasedelta1 (POLD1) (2018) Biochem. Biophys. Res. Commun., 502, pp. 351-357. , COI: 1:CAS:528:DC%2BC1cXhtVCntLbI, PID: 29807012; Abbas, T., Dutta, A., p21 in cancer: intricate networks and multiple activities (2009) Nat. Rev. Cancer, 9, pp. 400-414. , COI: 1:CAS:528:DC%2BD1MXlvFShsb4%3D, PID: 2722839
PY - 2019
Y1 - 2019
N2 - Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application. Methods: Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs. Results: Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism. We demonstrate these NSAIDs counteract carcinogen-induced proliferation by inhibiting the sirtuin 1 (SIRT1) deacetylase activity, augmenting acetylation and activity of the tumour suppressor p53 and increasing the expression of the antiproliferative gene p21. These properties are shared by all NSAIDs except for ketoprofen lacking anti-cancer properties. The clinical interest of the mechanism identified is underlined by our finding that p53 is activated in mastectomy patients undergoing intraoperative ketorolac, a treatment associated with decreased relapse risk and increased survival. Conclusion: Our study, for the first-time, links NSAID chemopreventive activity with direct SIRT1 inhibition and activation of the p53/p21 anti-oncogenic pathway, suggesting a novel strategy for the design of tumour-protective drugs. © 2019, The Author(s).
AB - Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application. Methods: Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs. Results: Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism. We demonstrate these NSAIDs counteract carcinogen-induced proliferation by inhibiting the sirtuin 1 (SIRT1) deacetylase activity, augmenting acetylation and activity of the tumour suppressor p53 and increasing the expression of the antiproliferative gene p21. These properties are shared by all NSAIDs except for ketoprofen lacking anti-cancer properties. The clinical interest of the mechanism identified is underlined by our finding that p53 is activated in mastectomy patients undergoing intraoperative ketorolac, a treatment associated with decreased relapse risk and increased survival. Conclusion: Our study, for the first-time, links NSAID chemopreventive activity with direct SIRT1 inhibition and activation of the p53/p21 anti-oncogenic pathway, suggesting a novel strategy for the design of tumour-protective drugs. © 2019, The Author(s).
KW - diclofenac
KW - ketoprofen
KW - ketorolac
KW - nicotinamide
KW - nimesulide
KW - prostaglandin synthase inhibitor
KW - protein p53
KW - sirtuin 1
KW - small interfering RNA
KW - sulindac sulfone
KW - antineoplastic agent
KW - cyclin dependent kinase inhibitor 1A
KW - nonsteroid antiinflammatory agent
KW - sulindac
KW - acetylation
KW - animal cell
KW - animal experiment
KW - animal model
KW - animal tissue
KW - antineoplastic activity
KW - Article
KW - bioluminescence
KW - breast cancer
KW - cancer incidence
KW - cancer inhibition
KW - cancer survival
KW - chemoprophylaxis
KW - computer model
KW - controlled study
KW - densitometry
KW - drug mechanism
KW - enantiomer
KW - ex vivo study
KW - female
KW - gene expression
KW - in vivo study
KW - molecular biology
KW - molecular docking
KW - molecular model
KW - mouse
KW - nonhuman
KW - priority journal
KW - protein expression
KW - real time polymerase chain reaction
KW - stable transfection
KW - Western blotting
KW - animal
KW - computer simulation
KW - drug effect
KW - human
KW - metabolism
KW - tumor cell line
KW - Animals
KW - Anti-Inflammatory Agents, Non-Steroidal
KW - Anticarcinogenic Agents
KW - Cell Line, Tumor
KW - Computer Simulation
KW - Cyclin-Dependent Kinase Inhibitor p21
KW - Cyclooxygenase Inhibitors
KW - Humans
KW - Ketorolac
KW - Mice
KW - Models, Molecular
KW - Sirtuin 1
KW - Sulindac
KW - Tumor Suppressor Protein p53
U2 - 10.1038/s41416-018-0372-7
DO - 10.1038/s41416-018-0372-7
M3 - Article
VL - 120
SP - 537
EP - 546
JO - Eur. J. Cancer
JF - Eur. J. Cancer
SN - 0959-8049
IS - 5
ER -